催化学报 ›› 2025, Vol. 69: 259-270.DOI: 10.1016/S1872-2067(24)60199-3

• 论文 • 上一篇    下一篇

靶向构筑高性能单原子铂基氢析出反应电催化剂

刘京a,b,1,*(), 马贤迪c,1, 卢政汉b,1, 申东元b, 赵阿雅d, 韩晸宇d, 龙剑平a, 周震c,e,f, 焦梦改c,*(), 李国承g,*(), 赵恩爱b,*()   

  1. a成都理工大学材料与化学化工学院, 四川成都 610059, 中国
    b韩国科学技术院材料科学与工程系, 大田, 韩国
    c郑州大学化工学院, 新能源科学与工程交叉研究中心, 河南郑州 450001, 中国
    d浦项科技大学化学工程系, 浦项, 韩国
    e南开大学材料科学与工程学院, 新能源材料化学研究所, 新能源转化与存储交叉科学中心, 先进能源材料化学教育部重点实验室, 天津 300350, 中国
    f龙门实验室, 河南洛阳 471023, 中国
    g浦项科技大学浦项加速器实验室, 浦项, 韩国
  • 收稿日期:2024-10-31 接受日期:2024-11-13 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: jingliu@cdut.edu.cn (刘京), mgjiao@zzu.edu.cn (焦梦改), lks3006@postech.ac.kr (李国承), eacho@kaist.ac.kr (赵恩爱).
  • 作者简介:第一联系人:

    1共同第一作者.

  • 基金资助:
    韩国政府国家研究基金会(NRF-2019M3D1A1079306);韩国政府国家研究基金会(NRF-2021R1A2C1011415);四川省自然科学基金(2023NSFSC1079);河南省高等学校重点研究项目(24A530009);龙门实验室前沿探索项目(LMQYTSKT021)

Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction

Jing Liua,b,1,*(), Xiandi Mac,1, Jeonghan Rohb,1, Dongwon Shinb, Ara Chod, Jeong Woo Hand, Jianping Longa, Zhen Zhouc,e,f, Menggai Jiaoc,*(), Kug-Seung Leeg,*(), EunAe Chob,*()   

  1. aCollege of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
    bDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Korea
    cInterdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
    dDepartment of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
    eSchool of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
    fLongmen Laboratory, Luoyang 471023, Henan, China
    gBeamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
  • Received:2024-10-31 Accepted:2024-11-13 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: jingliu@cdut.edu.cn (J. Liu), mgjiao@zzu.edu.cn (M. Jiao), lks3006@postech.ac.kr (K.-S. Lee), eacho@kaist.ac.kr (E. Cho).
  • About author:First author contact:

    1Contributed equally to this work.

  • Supported by:
    National Research Foundation of Korea (NRF) grant funded by Korea Government (MSIT)(NRF-2019M3D1A1079306);National Research Foundation of Korea (NRF) grant funded by Korea Government (MSIT)(NRF-2021R1A2C1011415);Sichuan Natural Science Foundation(2023NSFSC1079);Key Research Projects of Higher Education Institutions of Henan Province(24A530009);Frontier Exploration Projects of Longmen Laboratory(LMQYTSKT021)

摘要:

因具有高能量密度和零排放等优点, 氢能被认为是传统化石能源的最佳替代品.  质子交换膜水电解(PEMWE)是实现可持续环保制氢的一种有效策略.  其中, 析氢反应(HER)是电解水制氢的关键半反应.  贵金属铂(Pt)因具有适当的氢结合能, 被认为是酸性条件下电催化HER的首选材料.  而开发高性能的单原子Pt基HER电催化剂(Pt SAC)可以大幅度提高Pt的利用率, 进而降低催化剂的成本.  已有研究证实, 通过调控配位环境可以使Pt SAC在三电极系统中表现出与商业Pt/C相当的电催化HER活性.  然而, 有关将Pt SAC用作阴极材料构筑酸性电解槽并获得高性能水电解的报道较少.  因此, 探索一种简便易行的合成策略, 靶向构建在PEMWE实际应用中具有优异HER性能的Pt SAC是本文的主要研究思路.  

本文首先以氮掺杂的活性炭黑珍珠2000为载体(NBP), 通过低温水热还原反应, 制备含几个金属原子的钌原子簇前驱体材料(RuxNBP).  随后以K2PtCl4为Pt源, 通过碳缺陷辅助还原的静电置换反应制备了RuxNBP负载的Pt SAC (Pt1/RuxNBP).  X射线衍射、高角环形暗场扫描透射电镜、X射线光电子能谱及X射线吸收谱结果表明, Pt1/RuxNBP催化剂中的金属原子均匀分散.  其中, Pt主要以孤立的单原子形成分散存在, 且与吡啶氮基碳缺陷及两个Cl原子配位, 而Ru主要以含两个原子的Ru2单元分散存在.  作为控制实验, 分别以NBP和BP为载体, 以K2PtCl4为Pt源, 通过碳缺陷辅助还原的静电置换反应制备了与Pt1/RuxNBP目标Pt含量相同的Pt SAC (Pt1/NBP和Pt1/BP);  分别以NBP和RuxNBP为载体, 以Pt(acac)2为Pt源通过热水反应制备了与Pt1/RuxNBP目标Pt含量相同的Pt SAC (Pt/NBP和Pt/RuxNBP).  电化学测试上述Pt SAC在酸性条件下电催化HER活性的结果表明, 催化剂Pt1/BP和Pt/NBP对电催化HER几乎没有活性;  而Pt1/RuxNBP则展现出较好的电催化HER活性, 其在10 mA cm‒2时的过电位(η10)仅为11 mV, 远小于催化剂RuxNBP (228 mV), Pt1/NBP (143 mV)和Pt/RuxNBP (271 mV)的η10值, 甚至优于商业Pt/C (13 mV).  催化剂Pt1/RuxNBP在20 mV过电位时的质量活性为4.818 A mgPGM‒1, 是商业Pt/C的5.7倍.  此外, Pt1/RuxNBP也表现出较低的塔菲尔斜率(25 mV dec‒1)以及较好的稳定性.  进一步研究催化剂在酸性电解槽中的性能发现, 基于Pt1/RuxNBP为阴极材料组装的质子交换膜电解槽在1.0 A cm‒2电流密度时的电压比基于商业Pt/C的电解槽低20 mV, 且其在3.0 A cm‒2电流密度时的电压为1.807 V, 接近于美国能源部2026年目标 (1.8 V).  理论计算结果表明, 催化剂Pt1/RuxNBP中与Ru2单元相临近的单原子Pt为主要的HER活性位点, 且是Pt-Cl键和临近的Ru2协同调控单原子Pt的5d结构, 提高了催化剂Pt1/RuxNBP电催化HER的性能. 

综上, 本文结合低温水热还原和静电置换反应, 在温和条件下实现了高性能Pt SAC的制备, 探究了其在酸性条件下的电催化HER性能, 阐明了反应机制, 为研究利用不同的前驱体和杂原子掺杂的碳材料制备金属原子级分散的HER电催化剂提供了参考.

关键词: 铂, 单原子电催化剂, 钌团簇, 析氢反应, 密度泛函理论

Abstract:

Exploring platinum single-atom electrocatalysts (SACs) is of great significance for effectively catalyzing the hydrogen evolution reaction in order to maximize the utilization of metal atoms. Herein, ruthenium clusters with several atoms (Rux) supported on nitrogen-doped, cost-efficient Black Pearls 2000 (RuxNBP), were synthesized as initial materials via a simple hydrothermal method. Then, [PtCl4]2‒ ion was reductively deposited on RuxNBP to obtain a Pt SAC (Pt1/RuxNBP). Electrochemical measurements demonstrate the excellent HER performance of Pt1/RuxNBP with a 5.7-fold increase in mass activity compared to the commercial Pt/C at 20 mV. Moreover, the cell voltage of the proton exchange membrane electrolyzer with Pt1/RuxNBP is 20 mV lower compared to that with commercial Pt/C at 1.0 A cm‒2. Physical characterization and density functional theory calculations revealed that the preserved Pt-Cl bond of [PtCl4]2‒ and the RuxNBP support co-regulate the 5dstate of isolated Pt atoms and enhance the catalytic HER capacity of Pt1/RuxNBP.

Key words: Platinum, Single-atom eletrocatalyst, Ruthenium cluster, Hydrogen evolution reaction, Density functional theory