催化学报 ›› 2025, Vol. 70: 378-387.DOI: 10.1016/S1872-2067(24)60227-5

• 论文 • 上一篇    下一篇

Ir/TiO2催化剂甲烷燃烧反应中TiO2晶面依赖效应

段会梅a,*,1(), 李晓菲a,1, 王传辉a, 张丛筠a, 余楷文b, 陈磊a, 张云尚c, 纪嘉宾a, 杨贤峰d, 杨东江a,e,*()   

  1. a青岛大学环境科学与工程学院, 生物纤维与生态纺织品国家重点实验室, 山东青岛 266071, 中国
    b昆士兰大学环境学院, 昆士兰州布里斯班, 澳大利亚
    c中国科学技术大学化学物理系, 安徽省表界面化学与能源催化重点实验室, 安徽合肥 230026, 中国
    d华南理工大学分析测试中心, 广东广州 510640, 中国
    e宁波工业大学微纳材料与器件研究所, 浙江宁波 315211, 中国
  • 收稿日期:2024-10-29 接受日期:2024-12-13 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: duanhm@qdu.edu.cn (段会梅),d.yang@qdu.edu.cn (杨东江).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22376110);山东省自然科学基金(ZR2023ME098);山东省自然科学基金(ZR2021QB083);青岛市应用基础研究项目(RZ2200001413);生物纤维与生态纺织品国家重点实验室(青岛大学)(RZ2000004399)

TiO2-facet-dependent effect on methane combustion over Ir/TiO2 catalysts

Huimei Duana,*,1(), Xiaofei Lia,1, Chuanhui Wanga, Congyun Zhanga, Kaiwen Yub, Lei Chena, Yunshang Zhangc, Jiabin Jia, Xianfeng Yangd, Dongjiang Yanga,e,*()   

  1. aSchool of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China
    bSchool of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
    cKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
    dAnalytical and Testing Centre, South China University of Technology, Guangzhou 510640, Guangdong, China
    eInstitute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
  • Received:2024-10-29 Accepted:2024-12-13 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: duanhm@qdu.edu.cn (H. Duan),d.yang@qdu.edu.cn (D. Yang).
  • About author:1 Contributed equally to this work.
  • Supported by:
    National Nature Science Foundation of China(22376110);Shandong Provincial Natural Science Foundation(ZR2023ME098);Shandong Provincial Natural Science Foundation(ZR2021QB083);Applied Basic Research of Qingdao City (Postdoctoral Project)(RZ2200001413);State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University)(RZ2000004399)

摘要:

甲烷作为一种清洁能源, 也是一种强温室效应气体. 在天然气汽车尾气净化、天然气电厂尾气处理、乏风瓦斯和油田伴生气处理等过程中, 大量低浓度未燃尽甲烷的直接排放会造成严重的能量损失和温室效应. 甲烷催化燃烧是一种有效处理低浓度甲烷的净化技术. 负载型Ir催化剂, 特别是负载在TiO2载体上的Ir基催化剂, 因其较好的低温活化甲烷能力而受到越来越多的关注. 活性金属的氧化还原性能对催化剂的甲烷燃烧性能至关重要. 载体形貌工程借助金属-载体相互作用可有效调控活性金属的氧化还原性能. 然而至今, TiO2暴露晶面对Ir/TiO2催化剂甲烷燃烧性能影响及其相关机制研究尚不清楚, 阐明TiO2暴露面与Ir/TiO2催化剂甲烷燃烧反应活性之间的结构-性能关系具有重要意义.

本文首先制备了主要暴露{100}, {101}和{001}晶面的TiO2纳米晶, 采用湿化学法制备了均匀负载的Ir/TiO2纳米催化剂, 并用于甲烷催化燃烧性能评估. 研究发现, TiO2暴露晶面显著影响了Ir/TiO2催化剂的甲烷燃烧催化性能, 活性顺序为Ir/TiO2-{100} > Ir/TiO2-{101} >> Ir/TiO2-{001}. TiO2显著的晶面依赖效应与催化剂中不同电子金属-载体相互作用(EMSI)和氧空位紧密相关. 相比于Ir-TiO2-{101}和Ir-TiO2-{001}界面, Ir-TiO2-{100}界面处具有更强的电子转移TiO2→Ir, 诱导了富电子Ir物种的形成. 原位红外漫反射结合密度泛函理论计算研究发现, 相比于Ir/TiO2-{101}和Ir/TiO2-{001}催化剂, Ir-TiO2-{100}催化剂表面更易发生CH4分子中C-H的断裂. Ir/TiO2-{100}催化剂中富电子Ir结构和丰富的氧空位极大地增强了活性Ir物种的氧化还原性能, 加速了CH4和O2分子在催化剂表面的吸附和活化, 进而显著增强了甲烷氧化催化性能.

本文清楚阐明了Ir/TiO2催化剂在甲烷燃烧反应中TiO2晶面依赖效应, 加深了Ir纳米催化反应体系中EMSI和氧空位对甲烷燃烧催化性能的基本理解, 为高效Ir基甲烷燃烧催化剂的设计提供了理论依据.

关键词: Ir/TiO2, TiO2晶面依赖, 甲烷燃烧, 氧空位, 金属-载体相互作用

Abstract:

Engineering the morphology of the support is effective in tuning the redox properties of active metals for efficient catalytic methane combustion via tailoring the metal-support interaction. Herein, uniform Ir nanoparticles supported on anatase TiO2 with different morphologies predominantly exposing {100}, {101}, and {001} planes were synthesized and tested for methane combustion. The CH4 catalytic activity shows a remarkable TiO2-facet-dependent effect and follows the order of Ir/TiO2-{100} > Ir/TiO2-{101} >> Ir/TiO2-{001}. Detailed characterizations and DFT calculations reveal that compared with Ir-TiO2-{101} and Ir-TiO2-{001} interfaces, the superior Ir-TiO2-{100} interface facilitates the generation of electron-rich Ir species through more profound charge transfer from TiO2-{100} to Ir atoms. The electron-rich Ir structure, featuring abundant defect oxygen vacancies, significantly enhances the redox properties of active Ir species and reduces the activation energy for breaking the initial C-H bond in CH4, resulting in the superior catalytic activity for methane combustion. These findings deepen fundamental insights into the TiO2-facet-dependent reactivity of different Ir/TiO2 nanomaterials in methane oxidation and pave the way for designing efficient Ir-based methane oxidation catalysts.

Key words: Ir/TiO2, TiO2-facet-dependent, Methane combustion, Oxygen vacancies, Metal-support interaction