催化学报 ›› 2025, Vol. 71: 169-178.DOI: 10.1016/S1872-2067(24)60228-7

• 论文 • 上一篇    下一篇

C1物种在甲醇制烃类反应过程中的作用: 超越反应物角色

张亚楠a,c, 张雯娜a,*(), 张成伟a,c, 何林海a,c, 林杉帆a, 徐舒涛a, 魏迎旭a,*(), 刘中民a,b,c   

  1. a中国科学院大连化学物理研究所, 低碳催化技术国家工程研究中心, 洁净能源国家实验室,能源材料化学协同创新中心, 辽宁大连 116023
    b中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连 116023
    c中国科学院大学, 北京 100049
  • 收稿日期:2024-11-05 接受日期:2024-12-18 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: zhangwn@dicp.ac.cn (张雯娜), weiyx@dicp.ac.cn (魏迎旭).
  • 基金资助:
    国家重点研发计划(2021YFA1502600);国家自然科学基金(22372169);国家自然科学基金(22002157);国家自然科学基金(22402190);国家自然科学基金(21991092);国家自然科学基金(21991090);国家自然科学基金(22288101);辽宁省自然科学基金(2022-BS-019)

The role of C1 species in the methanol-to-hydrocarbons reaction: Beyond merely being reactants

Yanan Zhanga,c, Wenna Zhanga,*(), Chengwei Zhanga,c, Linhai Hea,c, Shanfan Lina, Shutao Xua, Yingxu Weia,*(), Zhongmin Liua,b,c   

  1. aNational Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    cUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-11-05 Accepted:2024-12-18 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: zhangwn@dicp.ac.cn (W. Zhang),weiyx@dicp.ac.cn (Y. Wei).
  • Supported by:
    National Key R&D Program of China(2021YFA1502600);National Natural Science Foundation of China(22372169);National Natural Science Foundation of China(22002157);National Natural Science Foundation of China(22402190);National Natural Science Foundation of China(21991092);National Natural Science Foundation of China(21991090);National Natural Science Foundation of China(22288101);Liaoning Provincial Natural Science Foundation of China(2022-BS-019)

摘要:

作为非石油资源生产包括低碳烯烃、芳烃、汽油等烃类物质的工业化路线, 甲醇制烃类(MTH)反应受到学术界和工业界的广泛关注. 在MTH反应过程中, C1物种, 包括甲醇、二甲醚和表面甲氧基物种, 在反应有机物种的演变和复杂反应网络的构建中起着至关重要的作用. C1物种不仅作为反应物, 而且还与活性烃池物种协同作用, 为自催化过程提供“燃料”并主导自催化动态演变. 然而, 在MTH复杂反应体系中, 甲醇、二甲醚、甲氧基等多种C1物种与活性烃池物种和非活性稠环芳烃物种相互作用机制以及随着反应过程的演变规律尚不明确. 因此, 深入理解C1物种在整个MTH反应过程中的重要作用是必要且具挑战的.
本文借助理论计算及谱学实验深入探究了C1物种在整个MTH复杂反应过程中的动态作用, 不仅仅是作为C1反应物的作用. 首先, 开展了原位漫反射傅立叶变换红外光谱和外原位13C交叉极化魔角旋转核磁共振等谱学实验, 分析了真实MTH反应过程中反应有机物种的动态演变和多种C1物种的独特变化. 值得注意的是, 不同C1物种信号(尤其是甲醇和甲氧基)的演化随MTH反应进行存在差异, 这表明其与不同反应阶段存留有机物种的相互作用有所不同. 进一步借助密度泛函理论计算详细地揭示了甲醇和甲氧基这两种关键的C1物种, 作为甲基化试剂参与甲基化反应以及作为氢受体促进不饱和物种生成反应中的作用, 阐述了它们在MTH不同反应阶段的具体贡献差异. 在反应初始阶段, 甲氧基作为主导的C1表面物种, 与烃类物种发生甲基化反应参与C-C键的生成及碳链增长, 同时也作为氢受体促进活性烃池物种形成. 随着反应进行, 甲氧基发挥的作用逐渐减弱, 甲醇取而代之成为优势的C1物种, 参与高效期甲基化反应以生成低碳烯烃产物, 同时参与氢转移反应进一步导致催化剂积碳失活. 此外, 研究表明反应后期大体积有机物种修饰的分子筛限域微环境会影响甲醇吸附和甲氧基生成, 进一步解释了反应后期甲氧基消失的原因.
综上, 本工作对C1物种(尤其是甲醇和甲氧基)在整个MTH反应过程中的动态作用提供了全面且系统的理解, 其超越了仅仅作为C1反应物的作用, 对于丰富C1化学理论具有重要意义.

关键词: 甲醇制烃类, C1物种, 甲基化, 氢转移, 分子筛限域微环境, SAPO-34

Abstract:

In the methanol-to-hydrocarbons (MTH) process, C1 species, including methanol, dimethyl ether, and surface methoxy species (SMS), play crucial roles in the evolution of organic species and the construction of reaction networks. Understanding the roles of C1 species throughout the entire MTH process is both essential and challenging. Herein, the dynamic evolution of organic species and unique variation of C1 species during the real-time MTH process were observed by operando diffused reflectance Fourier transform infrared spectroscopy and ex-situ 13C cross polarization/magic-angle spinning nuclear magnetic resonance experiments. Importantly, density functional theory calculations thoroughly illustrated that methanol and SMS serve as key C1 species, in the form of not only methylation agents but also hydride acceptors, and their contributions vary across different reaction periods. Initially, SMS acts as the preferential C1 surface intermediate, methylating with hydrocarbons to propagate C-C bond, while also accepting hydrides to generate precursors for active hydrocarbon pool species. As reaction progresses, the role of SMS gradually diminishes, and thereby methanol becomes the predominant C1 species, in methylation for efficient product formation, meanwhile in hydride-transfer causing catalyst deactivation. Additionally, it was demonstrated that the confined zeolite microenvironment modified by large organics affects methanol adsorption and SMS formation, also accounting for the absence of SMS during the later period of reaction. This work provides a comprehensive and systematic understanding of the dynamic roles of C1 species throughout the MTH process, beyond the role as reactants.

Key words: Methanol-to-hydrocarbons, C1 species, Methylation, Hydride-transfer, Confined zeolite microenvironments, SAPO-34