Chinese Journal of Catalysis ›› 2014, Vol. 35 ›› Issue (6): 952-959.DOI: 10.1016/S1872-2067(14)60114-5
• Articles • Previous Articles Next Articles
Yingsi Wu, Hao Yu, Hongjuan Wang, Feng Peng
Received:
2014-03-18
Revised:
2014-04-18
Online:
2014-05-30
Published:
2014-06-03
Supported by:
This work was supported by the National Natural Science Foundation of China (20806027, 21273079), the Natural Science Foundation of Guangdong Province (S20120011275), and the Program for New Century Excellent Talents in University (NCET-12-0190).
Yingsi Wu, Hao Yu, Hongjuan Wang, Feng Peng. Controllable synthesis and catalytic performance of graphene-supported metal oxide nanoparticles[J]. Chinese Journal of Catalysis, 2014, 35(6): 952-959.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(14)60114-5
[1] Balaya P. Energy Environ Sci, 2008, 1: 645 [2] Cheng M Y, Ye Y S, Chiu T M, Pan C J, Hwang B J. J Power Sources, 2014, 253: 27 [3] Li Y, Liu Q Y, Shen W J. Dalton Trans, 2011, 40: 5811 [4] Hu H, Zhao Z B, Wan W B, Gogotsi Y, Qiu J S. Adv Mater, 2013, 25: 2219 [5] Wang Z L, Xu D, Wang H G, Wu Z, Zhang X B. ACS Nano, 2013, 7: 2422 [6] Phua P H, Lefort L, Boogers J A F, de Tristany M, Vries J G. Chem Commun, 2009: 3747 [7] Lin J K, Qiao B T, Liu J Y, Huang Y Q, Wang A Q, Li L, Zhang W S, Allard L F, Wang X D, Zhang T. Angew Chem Int Ed, 2012, 51: 2920 [8] Zhu J, Kailasam K, Fischer A, Thomas A. ACS Catal, 2011, 1: 342 [9] He Q G, Li Q, Khene S, Ren X M, López-Suárez F E, Lozano-Castelló D, Bueno-López A, Wu G. J Phys Chem C, 2013, 117: 8697 [10] Galvis H M T, Bitter J H, Davidian T, Ruitenbeek M, Dugulan A I, de Jong K P. J Am Chem Soc, 2012, 134: 16207 [11] Fu T J, Lü J, Li Z H. Ind Eng Chem Res, 2014, 53: 1342 [12] Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. Catal Lett, 2014, 144: 133 [13] Pina G, Louis C, Keane M A. Phys Chem Chem Phys, 2003, 5: 1924 [14] Du A J, Ng Y H, Bell N J, Zhu Z H, Amal R, Smith S C. J Phys Chem Lett, 2011, 2: 894 [15] Sun Y Q, Shi G Q. J Polym Sci Pt B-Polym Phys, 2013, 51: 231 [16] Kou R, Shao Y Y, Wang D H, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C M, Lin Y H, Wang Y, Aksay I A, Liu J. Electrochem Commun, 2009, 11: 954 [17] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6: 3206 [18] Gao Y J, Ma D, Hu G, Zhai P, Bao X H, Zhu B, Zhang B S, Su D S. Angew Chem Int Ed, 2011, 50: 10236 [19] Byon H R, Suntivich J, Shao-Horn Y. Chem Mater, 2011, 23: 3421 [20] Zhang G Q, Lou X W. Sci Rep, 2013, 3: 1470 [21] Myung S, Park J, Lee H, Kim K S, Hong S. Adv Mater, 2010, 22: 2045 [22] Mao S, Lu G H, Yu K H, Bo Z. Chen J H. Adv Mater, 2010, 22: 3521 [23] Zhang G Q, Xia B Y, Wang X, Lou X W. Adv Mater, 2013, 26: 2408 [24] Tien H W, Huang Y L, Yang S Y, Wang J Y, Ma C M. Carbon, 2011, 49: 1550 [25] Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y. ACS Appl Mater Inter, 2012, 4: 4623 [26] Ji Z Y, Shen X P, Zhu G X, Zhou H, Yuan A H. J Mater Chem, 2012, 22: 3471 [27] Wu Z S, Ren W C, Wen L, Gao L B, Zhao J P, Chen Z P, Zhou G M, Li F, Cheng H M. ACS Nano, 2010, 4: 3187 [28] Gotoh K, Kinumoto T, Fujii E, Yamamoto A, Hashimoto H, Ohkubo T, Itadani A, Kuroda Y, Ishida H. Carbon, 2011, 49: 1118 [29] Liu Y W, Guan M X, Feng L, Deng S L, Bao J F, Xie S Y, Chen Z, Huang R B, Zheng L S. Nanotechnol, 2013, 24: 025604 [30] Ren L L, Huang S, Fan W, Liu T X. Appl Surf Sci, 2011, 258: 1132 [31] Zhu J X, Sharma Y K, Zeng Z Y, Zhang X J, Srinivasan M, Mhaisalkar S, Zhang H, Hng H H, Yan Q Y. J Phys Chem C, 2011, 115: 8400 [32] Fang M, Chen Z X, Wang S Z, Lu H B. Nanotechnol, 2012, 23: 085704 [33] Fu X B, Yu H, Peng F, Wang H J, Qian Y. Appl Catal A, 2007, 321: 190 [34] Wu Y S, Yu H, Peng F, Wang H J. Mater Lett, 2012, 67: 245 [35] Chen Y T, Wang H P, Liu C J, Zeng Z Y, Zhang H, Zhou C M, Jia X L, Yang Y H. J Catal, 2012, 289: 105 [36] Chen H, Tang Q H, Chen Y T, Yan Y B, Zhou C M, Guo Z, Jia X L, Yang Y H. Catal Sci Technol, 2013, 3: 328 [37] Zhou C M, Chen H, Yan Y B, Jia X L, Liu C J, Yang Y H. Catal Today, 2013, 211: 104 [38] Zhou X T, Ji H B. Chin J Catal (周贤太, 纪红兵. 催化学报), 2012, 33: 1906 [39] Wu S X, He Q Y, Zhou C M, Qi X Y, Huang X, Yin Z Y, Yang Y H, Zhang H. Nanoscale, 2012, 4: 2478 [40] Ali S R, Chandra P, Latwal M, Jain S K, Bansal V K, Singh S P. Chin J Catal (催化学报), 2011, 32: 1844 [41] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Chem Mater, 1999, 11: 771 [42] Zhang J T, Xiong Z G, Zhao X S. J Mater Chem, 2011, 21: 3634 [43] Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang B, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J Am Chem Soc, 2013, 135: 2273 [44] Wang C M, Baer D R, Amonette J E, Engelhard M H, Antony J, Qiang Y. J Am Chem Soc, 2009, 131: 8824 [45] Koo B, Xiong H, Slater M D, Prakapenka V B, Baasubramanian M, Podsiadlo P, Johnson C S, Rajh T, Shevchenko E V. Nano Lett, 2012, 12: 2429 [46] Yan J, Zhao Z W, Pan L K. Phys Status Solidi (A), 2011, 208: 2335 [47] Zhang Y J, Hu W B, Li B, Peng C, Fan C H, Huang Q. Nanotechnol, 2011, 22: 345601 [48] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326 [49] Chuang T J, Brundle C R, Rice D W. Surf Sci, 1976, 59: 413 [50] Ji H B, Wang T T, Zhang M Y, Chen Q L, Gao X N. React Kinet Catal Lett, 2007, 90: 251 [51] Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang P, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J Am Chem Soc, 2013, 135: 2273 [52] Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y. Chin J Catal (余运波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义. 催化学报), 2013, 34: 283 [53] Yan X H, Zhang G R, Xu B Q. Chin J Catal (严祥辉, 张贵荣, 徐柏庆. 催化学报), 2013, 34: 1992 [54] Zhang K J, Zhang L X, Chen X, He X, Wang X G, Dong S M, Han P X, Zhang C J, Wang S, Gu L, Cui G L. J Phys Chem C, 2012, 117: 858 [55] Liao L, Zhang Q H, Su ZH, Zhao Z Z, Wang Y N, Li Y, Lu X X, Wei D G, Feng G Y, Yu Q K, Cai X J, Zhao J M, Ren Z F, Fang H, Robles-Hernandez F, Baldelli S, Bao J M. Nat Nanotechnol, 2014, 9: 69 [56] Zhu L H, Zheng L, Du K Q, Fu H, Li Y H, You G R, Chen B H. RSC Adv, 2013, 3: 713 |
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[3] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[4] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[5] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[6] | Feng Li, Xiaolong Tang, Zhuofeng Hu, Xiangming Li, Fang Li, Yu Xie, Yanbin Jiang, Changlin Yu. Boosting the hydrogen peroxide production over In2S3 crystals under visible light illumination by gallium ions doping and sulfur vacancies modulation [J]. Chinese Journal of Catalysis, 2023, 55(12): 253-264. |
[7] | Peiwen Wu, Chang Deng, Feng Liu, Haonan Zhu, Linlin Chen, Ruoyu Liu, Wenshuai Zhu, Chunming Xu. Magnetically recyclable high-entropy metal oxide catalyst for aerobic catalytic oxidative desulfurization [J]. Chinese Journal of Catalysis, 2023, 54(11): 238-249. |
[8] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[9] | Lili Zhang, Suyu Jiang, Wei Ma, Zhen Zhou. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway [J]. Chinese Journal of Catalysis, 2022, 43(6): 1433-1443. |
[10] | Yu Ding, Kai-Wen Cao, Jia-Wei He, Fu-Min Li, Hao Huang, Pei Chen, Yu Chen. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1535-1543. |
[11] | Haijiao Lu, Xianlong Li, Sabiha Akter Monny, Zhiliang Wang, Lianzhou Wang. Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors [J]. Chinese Journal of Catalysis, 2022, 43(5): 1204-1215. |
[12] | Hui Mao, Haoran Yang, Jinchi Liu, Shuai Zhang, Daliang Liu, Qiong Wu, Wenping Sun, Xi-Ming Song, Tianyi Ma. Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide [J]. Chinese Journal of Catalysis, 2022, 43(5): 1341-1350. |
[13] | Zixun Yu, Chang Liu, Yeyu Deng, Mohan Li, Fangxin She, Leo Lai, Yuan Chen, Li Wei. Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production [J]. Chinese Journal of Catalysis, 2022, 43(5): 1238-1246. |
[14] | Yue-Hua Li, Zi-Rong Tang, Yi-Jun Xu. Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis [J]. Chinese Journal of Catalysis, 2022, 43(3): 708-730. |
[15] | Zicong Jiang, Yong Zhang, Liuyang Zhang, Bei Cheng, Linxi Wang. Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods [J]. Chinese Journal of Catalysis, 2022, 43(2): 226-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||