Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (1): 2-8.DOI: 10.1016/S1872-2067(19)63465-0
• Photocatalytic H2 production • Previous Articles Next Articles
Guancai Xiea,b, Saad Ullah Jana,b, Zejian Donga,b, Yawen Daia,b, Rajender Boddulaa, Yuxuan Weia,b, Chang Zhaoa,b, Qi Xina, Jiao-Na Wangc, Yinfang Duc, Lan Mac, Beidou Guoa,b, Jian Ru Gonga,b
Received:2019-06-21
Revised:2019-07-18
Online:2020-01-18
Published:2019-10-22
Supported by:Guancai Xie, Saad Ullah Jan, Zejian Dong, Yawen Dai, Rajender Boddula, Yuxuan Wei, Chang Zhao, Qi Xin, Jiao-Na Wang, Yinfang Du, Lan Ma, Beidou Guo, Jian Ru Gong. GaP/GaPN core/shell nanowire array on silicon for enhanced photoelectrochemical hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41(1): 2-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63465-0
| [1] K. Sivula, R. van de Krol, Nat. Rev. Mater., 2016, 1, 15010. [2] Y. Lv, A. Batool, Y. Wei, Q. Xin, R. Boddula, S. U. Jan, M. Z. Akram, L. Tian, B. Guo, J. R. Gong, ChemElectroChem, 2019, 6, 2497-2502. [3] B. Guo, L. Tian, W. Xie, A. Batool, G. Xie, Q. Xiang, S. U. Jan, R. Boddula, J. R. Gong, Nano Lett., 2018, 18, 5954-5960. [4] B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, J. R. Gong, Nano Lett., 2018, 18, 1516-1521. [5] K. Zhang, T. Dong, G. Xie, L. Guan, B. Guo, Q. Xiang, Y. Dai, L. Tian, A. Batool, S. U. Jan, R. Boddula, A. A. Thebo, J. R. Gong, ACS Appl. Mater. Interfaces, 2017, 9, 42723-42733. [6] P. Kuang, L. Zhang, B. Cheng, J. Yu, Appl. Catal. B, 2017, 218, 570-580. [7] S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, Z. Mi, Nano Lett., 2018, 18, 6530-6537. [8] Z. Wang, L. Wang, Chin. J. Catal., 2018, 39, 369-378. [9] I. S. Cho, H. S. Han, M. Logar, J. Park, X. Zheng, Adv. Energy Mater., 2016, 6, 1501840. [10] N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, P. Yang, ACS Nano, 2016, 10, 5525-5535. [11] Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, K. Domen, Adv Mater., 2013, 25, 125-131. [12] M. Zhong, Y. Ma, P. Oleynikov, K. Domen, J.-J. Delaunay, Energy Environ. Sci., 2014, 7, 1693-1699. [13] Y. Wang, Y. Li, S. Cao, J. Yu, Chin. J. Catal., 2019, 40, 867-874. [14] Q. Ding, F. Meng, C. R. English, M. Caban-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, S. Jin, J. Am. Chem. Soc., 2014, 136, 8504-8507. [15] M. Basu, Z. W. Zhang, C. J. Chen, P. T. Chen, K. C. Yang, C. G. Ma, C. C. Lin, S. F. Hu, R. S. Liu, Angew. Chem. Int. Ed., 2015, 54, 6211-6216. [16] L. Wang, X. Gu, Y. Zhao, M. Wei, C. Huang, Y. Qiang, Appl. Surf. Sci., 2018, 448, 126-132. [17] H. Meng, K. Fan, J. Low, J. Yu, Dalton Trans., 2016, 45, 13717-13725. [18] R. Fan, G. Huang, Y. Wang, Z. Mi, M. Shen, Appl. Catal. B, 2018, 237, 158-165. [19] W. Zhou, F. Niu, S. S. Mao, S. Shen, Appl. Catal. B, 2018, 220, 362-366. [20] M. G. Walter, E. L. Warren, J. R. Mckone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev., 2010, 110, 6446-6473. [21] J. Zhao, L. Cai, H. Li, X. Shi, X. Zheng, ACS Energy Lett., 2017, 2, 1939-1946. [22] A. Kargar, S. J. Kim, P. Allameh, C. Choi, N. Park, H. Jeong, Y. Pak, G. Y. Jung, X. Pan, D. Wang, S. Jin, Adv. Funct. Mater., 2015, 25, 2609-2615. [23] J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, H. Dai, Nano Res., 2015, 8, 1577-1583. [24] R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, M. S. Wrighton, J. Am. Chem. Soc., 1982, 104, 467-482. [25] E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, N. S. Lewis, Energy Environ. Sci., 2012, 5, 9653-9661. [26] D. Bae, B. Seger, P. C. K. Vesborg, O. Hansen, I. Chorkendorff, Chem. Soc. Rev., 2017, 46, 1933-1954. [27] S. Li, P. Zhang, X. Song, L. Gao, ACS Appl. Mater. Interfaces, 2015, 7, 18560-18565. [28] X. Zhu, Z. Guan, P. Wang, Q. Zhang, Y. Dai, B. Huang, Chin. J. Catal., 2018, 39, 1704-1710. [29] Z. Dong, D. Ding, T. Li, C. Ning, Appl. Surf. Sci., 2018, 436, 125-133. [30] Z. Bao, X. Xu, G. Zhou, J. Hu, Nanotechnology, 2016, 27, 305403. [31] K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, D. Wang, Chem. Rev., 2014, 114, 8662-8719. [32] A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, G. Y. Jung, S. Jin, D. Wang, ACS Nano, 2013, 7, 9407-9415. [33] M. Malizia, B. Seger, I. Chorkendorff, P. C. K. Vesborg, J. Mater. Chem. A, 2014, 2, 6847-6853. [34] N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, N. S. Lewis, Adv. Energy Mater., 2012, 2, 1109-1116. [35] R. Krauserehberg, A. Polity, W. Siegel, G. Kuhnel, Semicond. Sci. Technol., 1993, 8, 290. [36] S. Lee, W. Wen, Q. Cheek, S. Maldonado, J. Cryst. Growth, 2018, 482, 36-43. [37] M. Alqahtani, S. Sathasivam, F. Cui, L. Steier, X. Xia, C. Blackman, E. Kim, H. Shin, M. Benamara, Y. I. Mazur, G. J. Salamo, I. P. Parkin, H. Liu, J. Wu, J. Mater. Chem. A., 2019, 7, 8550-8558. [38] Y. Abbas, Z. Zuhra, N. Akhtar, S. Ali, J.R. Gong, ACS Appl. Energy Mater., 2018, 1, 3529-3536. [39] A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. van Dam, Y. Cui, P. H. Notten, J. E. Haverkort, E. P. A. M. Bakkers, Nat Commun., 2015, 6, 7824. [40] J. Li, N. Wu, Catal. Sci. Technol., 2015, 5, 1360-1384. [41] T. G. Deutsch, C. A. Koval, J. A. Turner, J. Phys. Chem. B, 2006, 110, 25297-25307. [42] S. L. Chen, W. M. M. Chen, I. A. Buyanova, J. Phys. Chem. C, 2018, 122, 19212-19218. [43] H. K. Kang, J. Y. Kim, M. S. Noh, C. Y. Kang, Y. D. Kim, M. H. Cho, J. D. Song, Nano Energy, 2018, 53, 57-65. [44] S. Liu, Z. R. Tang, Y. Sun, J. C. Colmenares, Y. J. Xu, Chem. Soc. Rev., 2015, 44, 5053-5075. [45] A. Kargar, S. Sukrittanon, C. Zhou, Y. G. Ro, X. Pan, S. A. Dayeh, C. W. Tu, S. Jin, Small, 2017, 13, 1603574. [46] W. Wen, A. I. Carim, S. M. Collins, M. J. Price, S. L. Peczonczyk, S. Maldonado, J. Phys. Chem. C, 2011, 115, 22652-22661. [47] Q. Xiong, R. Gupta, K. W. Adu, E. C. Dickey, G. D. Lian, D. Tham, J. E. Fischer, P. C. Eklunda, J. Nanosci. Nanotechnol., 2003, 3, 335-339. [48] M. Steidl, K. Schwarzburg, B. Galiana, T. Kups, O. Supplie, P. Kleinschmidt, G. Lilienkamp, T. Hannappel, Nanotechnology, 2019, 30, 104002. [49] M. Steidl, M. Wu, K. Peh, P. Kleinschmidt, E. Spiecker, T. Hannappel, Nanoscale Res. Lett., 2018, 13, 417. [50] H. W. Seo, S. Y. Bae, J. Park, M.-I. Kang, S. Kim, Chem. Phys. Lett., 2003, 378, 420-424. [51] A. Dobrovolsky, S. Sukrittanon, Y. J. Kuang, C. W. Tu, W. M. Chen, I. A. Buyanova, Appl. Phys. Lett., 2014, 105. [52] A. Dobrovolsky, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, I. A. Buyanova, Small, 2014, 10, 4403-4408. [53] W. Walukiewicz, W. Shan, J. W. Ager Ⅲ, D. R. Chamberlin, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, Electrochem. Soc. Proceedings Vol. 99-11, Seattle, WA, USA, 1999, 190-199. |
| [1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
| [2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
| [3] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
| [4] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
| [5] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
| [6] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
| [7] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
| [8] | Mingjia Lu, Lecheng Liang, Binbin Feng, Yiwen Chang, Zhihong Huang, Huiyu Song, Li Du, Shijun Liao, Zhiming Cui. Ultrafast carbothermal shock strategy enabled highly graphitic porous carbon supports for fuel cells [J]. Chinese Journal of Catalysis, 2023, 52(9): 228-238. |
| [9] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
| [10] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
| [11] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
| [12] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
| [13] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
| [14] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
| [15] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||