Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (3): 494-502.DOI: 10.1016/S1872-2067(19)63476-5
• Articles • Previous Articles Next Articles
Lihua Yanga, Tianqu Hea, Chujun Laia, Ping Chena, Zhaoyin Houa,b
Received:
2019-07-04
Revised:
2019-08-06
Online:
2020-03-18
Published:
2019-11-19
Supported by:
Lihua Yang, Tianqu He, Chujun Lai, Ping Chen, Zhaoyin Hou. Selective oxidation of glycerol with oxygen in base-free solution over N-doped-carbon-supported Sb@PtSb2 hybrid[J]. Chinese Journal of Catalysis, 2020, 41(3): 494-502.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63476-5
[1] A. Talebian-Kiakalaieh, N. A. S. Amin, K. Rajaei, S. Tarighi, Appl. Energy, 2018, 230, 1347-1379. [2] L. H. Yang, X. W. Li, P. Chen, Z. Y. Hou, Chin. J. Catal., 2019, 40, 1020-1034. [3] K. Kong, D. F. Li, W. B. Ma, Q. Q. Zhou, G. P. Tang, Z. S. Hou, Chin. J. Catal., 2019, 40, 534-542. [4] C. Zhang, T. Wang, Y. J. Ding, Chin. J. Catal., 2017, 38, 928-938. [5] M. Y. Zhang, Y. Y. Sun, J. J. Shi, W. S. Ning, Z. Y. Hou, Chin. J. Catal., 2017, 38, 537-544. [6] T. Jedsukontorn, V. Meeyoo, N. Saito, M. Hunsom, Chin. J. Catal., 2016, 37, 1975-1981. [7] M. L. Faroppa, J. J. Musci, M. E. Chiosso, C. G. Caggiano, H. P. Bide-berripe, J. L. García Fierro, G. J. Siri, M. L. Casella, Chin. J. Catal., 2016, 37, 1982-1990. [8] H. Kimura,K. Tsuto, T. Wakisaka, Y. Kazumi, Y. Inaya, Appl. Catal. A:Gen., 1993, 96, 217-228. [9] P. Gallezot, Catal. Today, 1997, 37, 405-418. [10] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. J. Hutchings, Phys. Chem. Chem. Phys., 2013, 5, 1329-1336. [11] B. N. Zope, D. D. Hibbitts, M. Neurock, R. J. Davis, Science, 2010, 330, 74-78. [12] M. S. Ide, R. J. Davis, Acc. Chem. Res., 2014, 47, 825-833. [13] A. Villa, N. Dimitratos, C. E. Chan-Thaw, C. Hammond, L. Prati, G. J. Hutchings, Acc. Chem. Res., 2015, 48, 1403-1412. [14] Y. Li, F. Zaera, J. Catal., 2015, 326, 116-126. [15] J. Dou, B. W. Zhang, H. Liu, J. D. Hong, S. M. Yin, Y. Z. Huang, R. Xu, Appl. Catal. B:Environ., 2016, 180, 78-85. [16] Z. F. Yuan, Z. K. Gao, B. Q. Xu, Chin. J. Catal., 2015, 36, 1543-1551. [17] C. L. Xu, Y. Q. Du, C. Li, J. Yang, G. Yang, Appl. Catal. B:Environ., 2015, 164, 334-343. [18] A. Villa, S. Campisi, K. M. H. Mohammed, N. Dimitratos, F. Vindigni, M. Manzoli, W. Jones, M. Bowker, G. J. Hutchings, L. Prati, Catal. Sci. Technol., 2015, 5, 1126-1132. [19] Y. Li, F. Zaera, Catal. Sci. Technol., 2015, 5, 3773-3781. [20] E. Skrzyńska, S. Zaid, A. Addad, J.-S. Girardon, M. Capron, F. Dumeignil, Catal. Sci. Technol., 2016, 6, 3182-3196. [21] G. Dodekatos, H. Tüysüz, Catal. Sci. Technol., 2016, 6, 7307-7315. [22] G. Dodekatos, J. Ternieden, S. Schünemann, C. Weidenthaler, H. Tüysüz, Catal. Sci. Technol., 2018, 8, 4891-4899. [23] M. S. Ide, D. D. Falcone, R. J. Davis, J. Catal., 2014, 311, 295-305. [24] S. S. Chen, P. Y. Qi, J. Chen, Y. Z. Yuan, RSC Adv., 2015, 5, 31566-31574. [25] Y. Y. Sun, X. W. Li, J. G. Wang, W. S. Ning, J. Fu, X. Y. Lu, Z. Y. Hou, Appl. Catal. B:Environ., 2017, 218, 538-544. [26] A. Villa, G. M. Veith, L. Prati, Angew. Chem. Int. Ed., 2010, 49, 4499-4502. [27] G. L. Brett, Q. He, C. Hammond, P. J. Miedziak, N. Dimitratos, M. Sankar, A. A. Herzing, M. Conte, J. A. Lopez-Sanchez, C. J. Kiely, D. W. Knight, S. H. Taylor, G. J. Hutchings, Angew. Chem. Int. Ed., 2011, 50, 10136-10139. [28] C. M. Olmos, L. E. Chinchilla, E. G. Rodrigues, J. J. Delgado, A. B. Hungría, G. Blanco, M. F. R. Pereira, J. J. M. Órfã, J. J. Calvino, X. W. Chen, Appl. Catal. B:Environ., 2016, 197, 222-235. [29] W. B. Hu, B. Lowry, A. Varma, Appl. Catal. B:Environ., 2011, 106, 123-132. [30] J. B. Goodenough, R. Manoharan, A. K. Shukla, K. V. Ramesh, Chem. Mater., 1989, 1, 391-398. [31] J. H. Kim, S. M. Choi, S. H. Nam, M. H. Seo, S. H. Choi, W. B. Kim, Appl. Catal. B:Environ., 2008, 82, 89-102. [32] M. J. González, C. T. Hable, M. S. Wrighton, J. Phys. Chem. B, 1998, 102, 9881-9890. [33] K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B, 2002, 106, 1869-1877. [34] M. Y. Zhang, J. J. Shi, W. S. Ning, Z. Y. Hou, Catal. Today, 2017, 298, 234-240. [35] R. F. Nie, D. Liang, L. Shen, J. Gao, P. Chen, Z. Y. Hou, Appl. Catal. B:Environ., 2012, 127, 212-220. [36] X. M. Ning, Y. H. Li, H. Yu, F. Peng, H. J. Wang, Y. H. Yang, J. Catal., 2016, 335, 95-104. [37] O. S. G. P. Soares, R. P Rocha, A. G. Gonçalves, J. L. Figueiredo, J. J. M. Órfão, M. F. R. Pereira, Appl. Catal. B:Environ., 2016, 192, 296-303. [38] X. M. Ning, Y. H Li, B. Q. Dong, H. J. Wang, H. Yu, F. Peng, Y. H. Yang, J. Catal., 2017, 348, 100-109. [39] D. H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science, 2016, 351, 361-365. [40] X. Z. Duan, Y. F. Zhang, M. J. Pan, H. Dong, B. X. Chen, Y. Y. Ma, G. Qian, X. G. Zhou, J. Yang, D. Chen, AIChE J., 2018, 64, 3979-3987. [41] D. Liang, J. Gao, H. Sun, P. Chen, Z. Y. Hou, X. M. Zheng, Appl. Catal. B:Environ., 2011, 106, 423-432. [42] L. H. Yang, X. W. Li, Y. Y. Sun, L. H. Yue, J. Fu, X. Y. Lu, Z. Y. Hou, Catal. Commun., 2017, 101, 107-110. [43] M. Li, Y. P. Xiong, X. T. Liu, C. Han, Y. F. Zhang, X. J. Bo, L. P. Guo, J. Mater. Chem. A, 2015, 3, 9658-9667. [44] A. Katsaounis, Z. Nikopoulou, X. E. Verykios, C. G. Vayenas, J. Catal., 2004, 222, 192-206. [45] X. Fu, Y. Liu, W. Yao, Z. Wu, Catal. Commun., 2016, 83, 22-26. [46] Q. G. He, Q. Li, S. Khene, X. M. Ren, F. E. López-Suárez, D. Loza-no-Castelló, A. Bueno-López, G. Wu, J. Phys. Chem. C, 2013, 117, 8697-8707. [47] G. Wu, K. L. More, P. Xu, H. L. Wang, M. Ferrandon, A. J. Kropf, D. J. Myers, S. G. Ma, C. M. Johnston, P. Zelenay, Chem. Commun., 2013, 49, 3291-3293. [48] M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Adv. Mater., 2015, 27, 2521-2527. [49] S. Kozuch, J. M. L. Martin, ACS Catal., 2012, 2, 2787-2794. [50] F. Schüth, M. D. Ward, J. M. Buriak, Chem. Mater., 2018, 30, 3599-3600. [51] J. Q. Lei, H. Dong, X. Z. Duan, W. Y. Chen, G. Qian, D. Chen, X. G. Zhou, Ind. Eng. Chem. Res., 2016, 55, 420-427. [52] J. Q. Lei, X. Z. Duan, G. Qian, X. G. Zhou, CIESC J., 2017, 68, 679-686. |
[1] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
[2] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[3] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[4] | Zhipeng Guan, Dongfeng Yang, Zhao Liu, Shuxiang Zhu, Xingxing Zhong, Huamin Wang, Xiangwei Li, Xiaotian Qi, Hong Yi, Aiwen Lei. Regioselective electrochemical oxidative radical ortho-(4 + 2)/ipso-(3 + 2) cyclization [J]. Chinese Journal of Catalysis, 2023, 52(9): 144-153. |
[5] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[6] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[7] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[8] | Yinqi Wu, Qianqian Chen, Qi Chen, Qiang Geng, Qiaoyu Zhang, Yu-Cong Zheng, Chen Zhao, Yan Zhang, Jiahai Zhou, Binju Wang, Jian-He Xu, Hui-Lei Yu. Precise regulation of the substrate selectivity of Baeyer-Villiger monooxygenase to minimize overoxidation of prazole sulfoxides [J]. Chinese Journal of Catalysis, 2023, 51(8): 157-167. |
[9] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[10] | Chun Yin, Fulin Yang, Shuli Wang, Ligang Feng. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 225-236. |
[11] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[12] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[13] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[14] | Guoqing An, Xiaowei Zhang, Canyang Zhang, Hongyi Gao, Siqi Liu, Geng Qin, Hui Qi, Jitti Kasemchainan, Jianwei Zhang, Ge Wang. Metal-organic-framework-based materials as green catalysts for alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 50(7): 126-174. |
[15] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||