Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (10): 1663-1673.DOI: 10.1016/S1872-2067(20)63537-9
• Articles • Previous Articles Next Articles
Pan Lia,b, Sajjad Hussaina,b, Lu Lia, Lingju Guoa, Tao Hea,b
Received:2020-02-24
Revised:2020-03-28
Online:2020-10-18
Published:2020-08-15
Supported by:Pan Li, Sajjad Hussain, Lu Li, Lingju Guo, Tao He. Composition-tunable ZnS1-xSex nanobelt solid solutions for efficient solar-fuel production[J]. Chinese Journal of Catalysis, 2020, 41(10): 1663-1673.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63537-9
| [1] J. J. Wu, X. D. Zhou, Chin. J. Catal., 2016, 37, 999-1015. [2] W. Tu, Y. Zhou, Z. Zou, Adv. Mater., 2014, 26, 4607-4626. [3] X. Li, J. G. Yu, M. Jaroniec, X. B. Chen, Chem. Rev., 2019, 119, 3962-4179. [4] Y. J. Ma, Z. M. Wang, X. F. Xu, J. Y. Wang, Chin. J. Catal., 2017, 38, 1956-1969. [5] N. Nie, L. Y. Zhang, J. W. Fu, B. Cheng, J. G. Yu, Appl. Surf. Sci., 2018, 441, 12-22. [6] N. Nie, F. He, L. Y. Zhang, B. Cheng, Appl. Surf. Sci., 2018, 457, 1096-1102. [7] Y. J. Ren, D. Q. Zeng, W. J. Ong, Chin. J. Catal., 2019, 40, 289-319. [8] S. Tostón, R. Camarillo, F. Martínez, C. Jiménez, J. Rincón, Chin. J. Catal., 2017, 38, 636-650. [9] H. L. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Appl. Surf. Sci., 2018, 439, 552-559. [10] H. Du, Y. N. Liu, C. C. Shen, A. W. Xu, Chin. J. Catal., 2017, 38, 1295-1306. [11] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev., 2014, 43, 5234-5244. [12] X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev., 2010, 110, 6503-6570. [13] X. Zhang, C. Y. Wang, L. W. Wang, G. X. Huang, W. K. Wang, H. Q. Yu, Sci. Rep., 2016, 6, 22800. [14] X. Tao, Y. Zhao, L. Mu, S. Wang, R. Li, C. Li, Adv. Energy Mater., 2018, 8, 1701392. [15] D. Zhang, G. Li, H. Li, Y. Lu, Chem. Asian J., 2013, 8, 26-40. [16] Z. Fang, S. Weng, X. Ye, W. Feng, Z. Zheng, M. Lu, S. Lin, X. Fu, P. Liu, ACS Appl. Mater. Interface, 2015, 7, 13915-13924. [17] X. Hao, Y. Wang, J. Zhou, Z. Cui, Y. Wang, Z. Zou, Appl. Catal. B, 2018, 221, 302-311. [18] J. Zhang, J. Yu, Y. Zhang, Q. Li, J. R. Gong, Nano Lett., 2011, 11, 4774-4779. [19] J. Zhang, Y. Wang, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interfaces, 2013, 5, 1031-1037. [20] Y. Yu, G. Chen, Q. Wang, Y. Li, Energy Environ. Sci., 2011, 4, 3652-3660. [21] J. Zhang, S. Liu, J. Yu, M. Jaroniec, J. Mater. Chem., 2011, 21, 14655-14662. [22] I. Tsuji, A. Kudo, J. Photochem. Photobiol. A, 2003, 156, 249-252. [23] A. Kudo, M. Sekizawa, Chem. Commun., 2000, 1371-1372. [24] K. Li, R. Chen, S. L. Li, S. L. Xie, X. L. Cao, L. Z. Dong, J. C. Bao, Y. Q. Lan, ACS Appl. Mater. Interfaces, 2016, 8, 4516-4522. [25] Y. Y. Hsu, N. T. Suen, C. C. Chang, S. F. Hung, C. L. Chen, T. S. Chan, C. L. Dong, C. C. Chan, S. Y. Chen, H. M. Chen, ACS Appl. Mater. Interfaces, 2015, 7, 22558-22569. [26] Y. Jin, H. Zhang, C. Song, L. Wang, Q. Lu, F. Gao, Sci. Rep., 2016, 6, 29997. [27] Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, ACS Catal., 2013, 3, 882-889. [28] Z. Mei, M. Zhang, J. Schneider, W. Wang, N. Zhang, Y. Su, B. Chen, S. Wang, A.L. Rogach, F. Pan, Catal. Sci. Technol., 2017, 7, 982-987. [29] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc., 2004, 126, 13406-13413. [30] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B, 2005, 109, 7323-7329. [31] I. Tsuji, H. Kato, A. Kudo, Chem. Mater., 2006, 18, 1969-1975. [32] A. Kudo, I. Tsuji, H. Kato, Chem. Commun., 2002, 1958-1959. [33] Y. J. Yuan, D. Q. Chen, M. Xiong, J.S. Zhong, Z. Y. Wan, Y. Zhou, S. Liu, Z. T. Yu, L. X. Yang, Z. G. Zou, Appl. Catal. B, 2017, 204, 58-66. [34] X. Xu, R. Lu, X. Zhao, S. Xu, X. Lei, F. Zhang, D. G. Evans, Appl. Catal. B, 2011, 102, 147-156. [35] S. Nandy, Y. Goto, T. Hisatomi, Y. Moriya, T. Minegishi, M. Katayama, K. Domen, ChemPhotoChem., 2017, 1, 265-272. [36] T. Jing, Y. Dai, X. Ma, W. Wei, B. Huang, J. Phys. Chem. C, 2015, 119, 27900-27908. [37] K. Park, J. A. Lee, H. S. Im, C. S. Jung, H. S. Kim, J. Park, C. L. Lee, Nano Lett., 2014, 14, 5912-5919. [38] B. Liu, Y. Bando, L. Liu, J. Zhao, M. Masanori, X. Jiang, D. Golberg, Nano Lett., 2013, 13, 85-90. [39] Q. Fu, L. Yang, W. Wang, A. Han, J. Huang, P. Du, Z. Fan, J. Zhang, B. Xiang, Adv. Mater., 2015, 27, 4732-4738. [40] Z. X. Deng, C. Wang, X. M. Sun, Y. D. Li, Inorg. Chem., 2002, 41, 869-873. [41] J. Sun, Y. Chen, Z. N. Xu, Q. S. Chen, G. E. Wang, M. J. Zhang, G. Lu, K. C. Wu, G. C. Guo, CrystEngComm, 2014, 16, 6823-6826. [42] Z. X. Deng, C. Wang, X. M. Sun, Y. D. Li, Inorg. Chem., 2002, 41, 869-873. [43] A. K. Kole, C. S. Tiwary, P. Kumbhakar, CrystEngComm, 2013, 15, 5515-5525. [44] L. Nasi, D. Calestani, T. Besagni, P. Ferro, F. Fabbri, F. Licci, R. Mosca, J. Phys. Chem. C, 2012, 116, 6960-6965. [45] S. H. Yu, M. Yoshimura, Adv. Mater., 2002, 14, 296-300. [46] P. Blaha, K. Schwarz, H. K. G. Madsen, D. Kvasnicka, J. Luitz, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2012. [47] E. Engel, H. S. Vosko, Phys. Rev. B, 1994, 47, 13164-13174. [48] A. D Becke, E. R Johnson, J. Chem. Phys., 2006, 124, 221101. [49] J. Lu, Y. Dai, M. Guo, W. Wei, Y. Ma, S. Han, B. Huang, ChemPhysChem., 2012, 13, 147-154. [50] J. Liu, Z. Guo, F. Meng, T. Luo, M. Li, J. Liu, Nanotechnology, 2009, 20, 125501/1-125501/8. |
| [1] | Feng Sha, Shan Tang, Chizhou Tang, Zhendong Feng, Jijie Wang, Can Li. The role of surface hydroxyls on ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2023, 45(2): 162-173. |
| [2] | Shunta Nishioka, Kengo Shibata, Yugo Miseki, Kazuhiro Sayama, Kazuhiko Maeda. Visible-light-driven nonsacrificial hydrogen evolution by modified carbon nitride photocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(9): 2316-2320. |
| [3] | Fangshuai Chen, Chongbei Wu, Gengfeng Zheng, Liangti Qu, Qing Han. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects [J]. Chinese Journal of Catalysis, 2022, 43(5): 1216-1229. |
| [4] | Georgia Papanikolaou, Gabriele Centi, Siglinda Perathoner, Paola Lanzafame. Transforming catalysis to produce e-fuels: Prospects and gaps [J]. Chinese Journal of Catalysis, 2022, 43(5): 1194-1203. |
| [5] | Xuemei Jia, Zichen Shen, Qiaofeng Han, Huiping Bi. Rod-like Bi4O5I2/Bi4O5Br2 step-scheme heterostructure with oxygen vacancies synthesized by calcining the solid solution containing organic group [J]. Chinese Journal of Catalysis, 2022, 43(2): 288-302. |
| [6] | Jun Wan, Weijie Yang, Jiaqing Liu, Kailong Sun, Lin Liu, Feng Fu. Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31ClxBr10-x [J]. Chinese Journal of Catalysis, 2022, 43(2): 485-496. |
| [7] | Rongchen Shen, Yingna Ding, Shibang Li, Peng Zhang, Quanjun Xiang, Yun Hau Ng, Xin Li. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2021, 42(1): 25-36. |
| [8] | Bin Yang, Wei Deng, Limin Guo, Tatsumi Ishihara. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH [J]. Chinese Journal of Catalysis, 2020, 41(9): 1348-1359. |
| [9] | Xianglan Xu, Yunyan Tong, Jingyan Zhang, Xiuzhong Fang, Junwei Xu, Fuyan Liu, Jianjun Liu, Wei Zhong, Olga E. Lebedeva, Xiang Wang. Investigation of lattice capacity effect on Cu2+-doped SnO2 solid solution catalysts to promote reaction performance toward NOx-SCR with NH3 [J]. Chinese Journal of Catalysis, 2020, 41(5): 877-888. |
| [10] | Jixing Liu, Zhen Zhao, Chunming Xu, Jian Liu. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis [J]. Chinese Journal of Catalysis, 2019, 40(10): 1438-1487. |
| [11] | Zhiliang Wang, Lianzhou Wang. Progress in designing effective photoelectrodes for solar water splitting [J]. Chinese Journal of Catalysis, 2018, 39(3): 369-378. |
| [12] | Cheng Rao, Rui Liu, Xiaohui Feng, Jiating Shen, Honggen Peng, Xianglan Xu, Xiuzhong Fang, Jianjun Liu, Xiang Wang. Three-dimensionally ordered macroporous SnO2-based solid solution catalysts for effective soot oxidation [J]. Chinese Journal of Catalysis, 2018, 39(10): 1683-1694. |
| [13] | Qi Sun, Xianglan Xu, Honggen Peng, Xiuzhong Fang, Wenming Liu, Jiawei Ying, Fan Yu, Xiang Wang . SnO2-based solid solutions for CH4 deep oxidation: Quantifying the lattice capacity of SnO2 using an X-ray diffraction extrapolation method [J]. Chinese Journal of Catalysis, 2016, 37(8): 1293-1302. |
| [14] | Ehsan Amini, Mehran Rezaei, Mohammad Sadeghinia. Low temperature CO oxidation over mesoporous CuFe2O4 nanopowders synthesized by a novel sol-gel method [J]. Chinese Journal of Catalysis, 2013, 34(9): 1762-1767. |
| [15] | Mahmood ANDACHE, Mehran REZAEI, Mansour KAZEMI MOGHADAM. A nanocrystalline MgO support for Ni catalysts for steam reforming of CH4 [J]. Chinese Journal of Catalysis, 2013, 34(7): 1443-1448. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||