Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (2): 288-302.DOI: 10.1016/S1872-2067(20)63768-8
• Article • Previous Articles Next Articles
Xuemei Jia, Zichen Shen, Qiaofeng Han*(), Huiping Bi
Received:
2021-01-21
Accepted:
2021-02-23
Online:
2022-02-18
Published:
2021-04-25
Contact:
Qiaofeng Han
Supported by:
Xuemei Jia, Zichen Shen, Qiaofeng Han, Huiping Bi. Rod-like Bi4O5I2/Bi4O5Br2 step-scheme heterostructure with oxygen vacancies synthesized by calcining the solid solution containing organic group[J]. Chinese Journal of Catalysis, 2022, 43(2): 288-302.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63768-8
Fig. 3. SEM and TEM images of Bi4O5I2/Bi4O5Br2-P (a,c,e) and Bi4O5I2/Bi4O5Br2-OV (b,d,f); STEM image of Bi4O5I2/Bi4O5Br2-OV and the corresponding EDX elemental mapping of Bi, O, I and Br (g).
Fig. 4. The high-resolution XPS spectra Bi 4f (a) and O 1s (b) of Bi4O5I2/Bi4O5Br2-OV and Bi4O5I2/Bi4O5Br2-P; (c) EPR spectra for the as-obtained samples; (d) The production of •O2- by the as-obtained samples detected by the NBT method under visible light.
Fig. 5. (a) UV-vis diffuse reflectance spectra of the as-prepared samples, and the plots of the (ahv)1/2 vs. photon energy (hv) of Bi4O5Br2-OV and Bi4O5I2-OV (inset); Mott-Schottky plots (b) and valence band XPS spectra (c) of Bi4O5Br2-OV and Bi4O5I2-OV; (d) The energy band structures of the samples before and after calcination.
Fig. 6. Photocatalytic activities (a,c), and the corresponding reaction rate constants kapp (b,d) for the as-obtained photocatalysts for TC (a,b) and RhB (c,d) degradation under visible light (λ > 420 nm), and the insets in (b) and (d) showing the corresponding simulated kinetic curves.
Sample | Pollutant (mg/L) | Dosage (g/L) | t (min) | Light source | DE (%) | Ref. |
---|---|---|---|---|---|---|
BimOnBrz Bi4O5Br2 Bi4O5I2-Bi5O7I Bi7O9I3-OVR BixOyIz/g-C3N4 Bi4O5I2/Bi4O5Br2-OV BiOCl/Bi24O31Cl10 Bi4O5I2-Bi5O7I BiOI/BiOAc | 20 a 30 a 10 a 20 a 10 a 20 a 10 b 10 b 5 b 10 b 10 b | 1.0 0.6 1.0 0.6 1.0 0.4 1.0 1.0 0.4 | 120 120 240 40 240 120 40 240 80 | 400W halogen 1000 W Xe 500 W Xe 300 W Xe 500 W Xe 500 W Xe 500 W Xe 500 W Xe 500 W Xe | 98.9 75.0 78.0 70.0 40.0 90.2 98.1 79.0 96.0 | [ [ [ [ [ This work [ [ [ |
Bi7O9I3-OVR Bi4O5I2/Bi4O5Br2-OV | 0.4 0.4 | 60 120 | 300 W Xe 500W Xe | 85.0 97.0 | [ This work |
Table 1 Comparison of degradation efficiency (DE) of TC and RhB over different photocatalysts.
Sample | Pollutant (mg/L) | Dosage (g/L) | t (min) | Light source | DE (%) | Ref. |
---|---|---|---|---|---|---|
BimOnBrz Bi4O5Br2 Bi4O5I2-Bi5O7I Bi7O9I3-OVR BixOyIz/g-C3N4 Bi4O5I2/Bi4O5Br2-OV BiOCl/Bi24O31Cl10 Bi4O5I2-Bi5O7I BiOI/BiOAc | 20 a 30 a 10 a 20 a 10 a 20 a 10 b 10 b 5 b 10 b 10 b | 1.0 0.6 1.0 0.6 1.0 0.4 1.0 1.0 0.4 | 120 120 240 40 240 120 40 240 80 | 400W halogen 1000 W Xe 500 W Xe 300 W Xe 500 W Xe 500 W Xe 500 W Xe 500 W Xe 500 W Xe | 98.9 75.0 78.0 70.0 40.0 90.2 98.1 79.0 96.0 | [ [ [ [ [ This work [ [ [ |
Bi7O9I3-OVR Bi4O5I2/Bi4O5Br2-OV | 0.4 0.4 | 60 120 | 300 W Xe 500W Xe | 85.0 97.0 | [ This work |
Fig. 7. (a) Effect of initial pH on photocatalytic degradation of TC and RhB on Bi4O5I2/Bi4O5Br2-OV; (b) Point of zero charge of Bi4O5I2/Bi4O5Br2-OV; Effect of (c) water sources and (d) electrolytes on the degradation of TC and RhB on Bi4O5I2/Bi4O5Br2-OV.
Fig. 8. (a) Cycling runs of Bi4O5I2/Bi4O5Br2-OV for the degradation of TC and RhB under visible light (λ > 420 nm) and (b) XRD patterns of fresh and used Bi4O5I2/Bi4O5Br2-OV.
Fig. 9. (a) Influence of different scavengers on the degradation of TC and RhB on Bi4O5I2/Bi4O5Br2-OV heterostructures; (b) Nitro blue tetrazolium (NBT) transformation efficiency and (c) fluorescence spectra of TAOH in Bi4O5I2/Bi4O5Br2-OV photocatalytic system under visible light irradiation; (d-f) Schematic illustration of heterostructure: (d) before contact, (e) after contact in darkness and (f) photogenerated charge carrier transfer process in S-scheme heterojunction under illumination.
Fig. 10. Transient photocurrent response of (a) the as-prepared samples and (b) heterojunction Bi4O5I2/Bi4O5Br2-OV and Bi4O5I2/Bi4O5Br2-P with or without K2S2O8; (c) EIS Nyquist plots of the as-prepared samples and the proposed equivalent circuit (insets); (d) PL spectra of as-prepared Bi4O5I2, Bi4O5Br2 and Bi4O5I2/Bi4O5Br2-OV samples.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[4] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[7] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[8] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[9] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[10] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[11] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[12] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[13] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[14] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[15] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||