Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (11): 1761-1771.DOI: 10.1016/S1872-2067(20)63618-X

• Articles • Previous Articles     Next Articles

Functional principle of the synergistic effect of co-loaded Co-Pi and FeOOH on Fe2O3 photoanodes for photoelectrochemical water oxidation

Jingran Xiao, Longlong Fan, Zhongliang Huang, Jun Zhong, Feigang Zhao, Kaiji Xu, Shu-Feng Zhou, Guowu Zhan   

  1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
  • Received:2020-02-23 Revised:2020-03-29 Online:2020-11-18 Published:2020-08-15
  • Supported by:
    This work was supported by the Start-Up Scientific Research Funds for Newly Recruited Talents of Huaqiao University (605-50Y19013).

Abstract: The establishment of multi-component catalytic systems on Fe2O3 photoanodes presents considerable potential for significantly enhancing the performance of photoelectrochemical water splitting systems. In this study, we hydrothermally synthesized a Fe2O3 photoanode. In addition, d-FeOOH synthesized via dip-coating and hydrothermally prepared h-FeOOH were used as cocatalysts and their synergistic combinations with cobalt phosphate (Co-Pi) were investigated. The synergy between h-FeOOH and Co-Pi was remarkable, whereas that between d-FeOOH and Co-Pi was negligible. For example, the onset potentials of the Co-Pi/h-FeOOH and Co-Pi/d-FeOOH dual catalysts, were cathodically shifted by 270 and 170 mV, respectively. Moreover, the photocurrent density of the Co-Pi/h-FeOOH/Fe2O3 anode was significantly higher than that of the Co-Pi/d-FeOOH/Fe2O3 one. The synergistic effect of Co-Pi and h-FeOOH could be attributed to the significantly inhibited recombination of surface charges owing to the formation of a p-n junction between β-FeOOH and Fe2O3 and the large contact area between the granular h-FeOOH and Co-Pi. However, the thin amorphous FeOOH layer of the Co-Pi/d-FeOOH/Fe2O3 anode acted as a hole-transfer medium, and weakly promoted the kinetics of the charge transfer process.

Key words: Fe2O3, Synergistic effect, Onset potential, Photoanode, Water splitting