Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (11): 1761-1771.DOI: 10.1016/S1872-2067(20)63618-X
• Articles • Previous Articles Next Articles
Jingran Xiao, Longlong Fan, Zhongliang Huang, Jun Zhong, Feigang Zhao, Kaiji Xu, Shu-Feng Zhou, Guowu Zhan
Received:
2020-02-23
Revised:
2020-03-29
Online:
2020-11-18
Published:
2020-08-15
Supported by:
Jingran Xiao, Longlong Fan, Zhongliang Huang, Jun Zhong, Feigang Zhao, Kaiji Xu, Shu-Feng Zhou, Guowu Zhan. Functional principle of the synergistic effect of co-loaded Co-Pi and FeOOH on Fe2O3 photoanodes for photoelectrochemical water oxidation[J]. Chinese Journal of Catalysis, 2020, 41(11): 1761-1771.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63618-X
[13] Y. Lin, S. Zhou, S. Sheehan, D. Wang, J. Am. Chem. Soc., 2011, 133, 2398-2401. [14] J. Xiao, H. Huang, Q. Huang, L. Zhao, X. Li, X. Hou, H. Chen, Y. Li, J. Catal., 2017, 350, 48-55. [15] L. Qian, P. Liu, L. Zhang, C. Wang, S. Yang, L. Zheng, A. Chen, H. Yang, Chin. J. Catal., 2017, 38, 1045-1051. [16] Y. Lu, X. Ou, W. Wang, J. Fan, K. Lv, Chin. J. Catal., 2020, 41, 209-218. [17] Z. Wang, G. Liu, C. Ding, Z. Chen, F. Zhang, J. Shi, C. Li, J. Phys. Chem. C, 2015, 119, 19607-19612. [18] Q. Yu, X. Meng, T. Wang, P. Li, J. Ye, Adv. Funct. Mater., 2015, 25, 2686-2692. [19] J. Xiao, H. Huang, Q. Huang, X. Li, X. Hou, L. Zhao, R. Ma, H. Chen, Y. Li, Appl. Catal. B, 2017, 212, 89-96. [20] M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Gratzel, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc., 2011, 133, 14868-14871. [21] F. Bouhjar, L. Derbali, B. Marí, B. Bessaïs, Sol. Energy Mater. Sol. Cells, 2019, 195, 241-249. [22] F. Malara, F. Fabbri, M. Marelli, A. Naldoni, ACS Catal., 2016, 6, 3619-3628. [23] L. Xi, P. D. Tran, S. Y. Chiam, P. S. Bassi, W. F. Mak, H. K. Mulmudi, S. K. Batabyal, J. Barber, J. S. C. Loo, L. H. Wong, J. Phys. Chem. C, 2012, 116, 13884-13889. [24] F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V. Dal Santo, A. Naldoni, ACS Catal., 2015, 5, 5292-5300. [25] G. Wang, Y. Ling, X. Lu, T. Zhai, F. Qian, Y. Tong, Y. Li, Nanoscale, 2013, 5, 4129-4133. [26] W. D. Chemelewski, H.-C. Lee, J.-F. Lin, A. J. Bard, C. B. Mullins, J. Am. Chem. Soc., 2014, 136, 2843-2850. [27] J.-W. Jang, C. Du, Y. Ye, Y. Lin, X. Yao, J. Thorne, E. Liu, G. McMahon, J. Zhu, A. Javey, J. Guo, D. Wang, Nat. Commun., 2015, 6, 7447/1-7447/5. [28] J. Deng, Q. Zhang, K. Feng, H. Lan, J. Zhong, M. Chaker, D. Ma, ChemSusChem, 2018, 11, 3783-3789. [29] S.-S. Yi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Funct. Mater., 2019, 29, 1801902/1-1801902/9. [30] P. Zhang, T. Wang, X. Chang, L. Zhang, J. Gong, Angew. Chem. Int. Ed., 2016, 55, 5851-5855. [31] Z. Li, S. Feng, S. Liu, X. Li, L. Wang, W. Lu, Nanoscale, 2015, 7, 19178-19183. [32] J. Xiao, L. Fan, F. Zhao, Z. Huang, S.-F. Zhou, G. Zhan, J. Catal., 2020, 381, 139-149. [33] L. Zhao, J. Xiao, H. Huang, Q. Huang, Y. Zhao, Y. Li, Int. J. Hydrogen Energy, 2018, 43, 12646-12652. [34] S. Wang, S. Li, W. Wang, M. Zhao, J. Liu, H. Feng, Y. Chen, Q. Gu, Y. Du, W. Hao, Sensors Actuators B, 2019, 291, 34-41. [35] D. K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, D. R. Gamelin, Energy Environ. Sci., 2011, 4, 1759-1764. [36] B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Angew. Chem. Int. Ed., 2018, 57, 2248-2252. [37] I. S. Cho, H. S. Han, M. Logar, J. Park, X. Zheng, Adv. Energy Mater., 2016, 6, 1501840. [38] J. Huang, Y. Ding, X. Luo, Y. Feng, J. Catal., 2016, 333, 200-206. [39] Y.-S. Hu, A. Kleiman-Shwarsctein, G. D. Stucky, E. W. McFarland, Chem. Commun., 2009, 19, 2652-2654. [40] C. Ding, Z. Wang, J. Shi, T. Yao, A. Li, P. Yan, B. Huang, C. Li, ACS Appl. Mater. Interfaces, 2016, 8, 7086-7091. [41] M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, K. Domen, J. Am. Chem. Soc., 2015, 137, 5053-5060. [42] A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem, 2003, 4, 859-864. [43] Y. Xu, X. Wang, H. Chen, D. Kuang, C. Su, Adv. Funct. Mater., 2016, 26, 4414-4421. [44] B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T. W. Hamann, Energy Environ. Sci., 2012, 5, 7626-7636. [45] Z. Xu, H. Wang, Y. Wen, W. Li, C. Sun, Y. He, Z. Shi, L. Pei, Y. Chen, S. Yan, Z. Zou, ACS Appl. Mater. Interfaces, 2018, 10, 3624-3633. [46] B. Iandolo, A. Hellman, Angew. Chem. Int. Ed., 2014, 53, 13404-13408. [47] E. A. Ponomarev, L. M. Peter, J. Electroanal. Chem., 1995, 397, 45-52. [48] J. F. Zhang, R. Garcia-Rodriguez, P. Cameron, S. Eslava, Energy Environ. Sci., 2018, 11, 2972-2984. [49] K. G. Upul Wijayantha, S. Saremi-Yarahmadi, L. M. Peter, Phys. Chem. Chem. Phys., 2011, 13, 5264-5270. [50] G. M. Carroll, D. R. Gamelin, J. Mater. Chem. A, 2016, 4, 2986-2994. [51] J. Xie, P. Yang, X. Liang, J. Xiong, ACS Appl. Energy Mater., 2018, 1, 2769-2775. [52] L. Steier, I. Herraiz-Cardona, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, S. D. Tilley, M. Grätzel, Adv. Funct. Mater., 2014, 24, 7681-7688. [53] B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc., 2012, 134, 4294-4302. [54] Y. Surendranath, M. W. Kanan, D. G. Nocera, J. Am. Chem. Soc., 2010, 132, 16501-16509. |
[1] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[2] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[3] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[4] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Zhidong Wei, Jiawei Yan, Weiqi Guo, Wenfeng Shangguan. Nanoscale lamination effect by nitrogen-deficient polymeric carbon nitride growth on polyhedral SrTiO3 for photocatalytic overall water splitting: Synergy mechanism of internal electrical field modulation [J]. Chinese Journal of Catalysis, 2023, 48(5): 279-289. |
[7] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[8] | Dan Zhang, Yue Shi, Xilei Chen, Jianping Lai, Bolong Huang, Lei Wang. High-entropy alloy metallene for highly efficient overall water splitting in acidic media [J]. Chinese Journal of Catalysis, 2023, 45(2): 174-183. |
[9] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[10] | Xiaoning Li, Chongyan Hao, Yumeng Du, Yun Lu, Yameng Fan, Mingyue Wang, Nana Wang, Ruijin Meng, Xiaolin Wang, Zhichuan J. Xu, Zhenxiang Cheng. Harnessing magnetic fields to accelerate oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 55(12): 191-199. |
[11] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[12] | Ningning Wang, Shuo Wang, Can Li, Chenyang Li, Chunjiang Liu, Shanshan Chen, Fuxiang Zhang. ZrO2 modification of homogeneous nitrogen-doped oxide MgTa2O6-xNx for promoted photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2023, 54(11): 220-228. |
[13] | Hui Su, Jing Jiang, Shaojia Song, Bohan An, Ning Li, Yangqin Gao, Lei Ge. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting [J]. Chinese Journal of Catalysis, 2023, 44(1): 7-49. |
[14] | Wen Zhang, Meng Tian, Haimiao Jiao, Hai-Ying Jiang, Junwang Tang. Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2022, 43(9): 2321-2331. |
[15] | Shunta Nishioka, Kengo Shibata, Yugo Miseki, Kazuhiro Sayama, Kazuhiko Maeda. Visible-light-driven nonsacrificial hydrogen evolution by modified carbon nitride photocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(9): 2316-2320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||