Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (2): 356-366.DOI: 10.1016/S1872-2067(20)63665-8
• Articles • Previous Articles
Dianwen Hu, Xiaojing Song, Shujie Wu, Xiaotong Yang, Hao Zhang, Xinyu Chang, Mingjun Jia*()
Received:
2020-04-08
Accepted:
2020-05-13
Online:
2021-02-18
Published:
2021-01-21
Contact:
Mingjun Jia
About author:
*Tel: +86-431-85155390; Fax: +86-431-85168420; E-mail: jiamj@jlu.edu.cnSupported by:
Dianwen Hu, Xiaojing Song, Shujie Wu, Xiaotong Yang, Hao Zhang, Xinyu Chang, Mingjun Jia. Solvothermal synthesis of Co-substituted phosphomolybdate acid encapsulated in the UiO-66 framework for catalytic application in olefin epoxidation[J]. Chinese Journal of Catalysis, 2021, 42(2): 356-366.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63665-8
Sample | BET surface area (m2·g-1) | Pore volume (cm3·g-1) | Pore diameter (nm) | POM loading (mmol·g-1/wt%) | Mo loading (mmol·g-1/wt%) | Co loading (mmol·g-1/wt%) |
---|---|---|---|---|---|---|
UiO-66 | 1202 | 0.58 | 1.9 | — | — | — |
PMo12@UiO-66 | 994 | 0.53 | 2.1 | (0.040/7.3) | (0.480/4.6) | — |
PMo11Co@UiO-66 | 991 | 0.51 | 2.0 | (0.038/6.7) | (0.418/4.0) | (0.038 /0.2) |
PMo11Co/UiO-66-imp | 956 | 0.47 | 1.9 | (0.037/6.6) | (0.407/3.9) | (0.037 / 0.2) |
Table 1 Textural parameters derived from N2 adsorption-desorption profiles as well as element compositions determined by ICP-OES analyses of various materials.
Sample | BET surface area (m2·g-1) | Pore volume (cm3·g-1) | Pore diameter (nm) | POM loading (mmol·g-1/wt%) | Mo loading (mmol·g-1/wt%) | Co loading (mmol·g-1/wt%) |
---|---|---|---|---|---|---|
UiO-66 | 1202 | 0.58 | 1.9 | — | — | — |
PMo12@UiO-66 | 994 | 0.53 | 2.1 | (0.040/7.3) | (0.480/4.6) | — |
PMo11Co@UiO-66 | 991 | 0.51 | 2.0 | (0.038/6.7) | (0.418/4.0) | (0.038 /0.2) |
PMo11Co/UiO-66-imp | 956 | 0.47 | 1.9 | (0.037/6.6) | (0.407/3.9) | (0.037 / 0.2) |
Fig. 2. SEM images of UiO-66 (a), PMo12@UiO-66 (b), and PMo11Co@UiO-66 (c); (d,e) TEM images of PMo11Co@UiO-66; (f) HAADF-STEM image of PMo11Co@UiO-66; (g-i) EDS mapping images of PMo11Co@UiO-66.
Fig. 4. (A) N2 adsorption-desorption isotherms of UiO-66, PMo12@UiO-66, and PMo11Co@UiO-66 composites; (B) Pore size distribution curves of UiO-66, PMo12@UiO-66, and PMo11Co@UiO-66 composites.
Fig. 7. (A) XPS profiles for the binding energies of Mo 3d in PMo12, PMo11Co, PMo11Co@UiO-66, and reused PMo11Co@UiO-66; (B) XPS profiles for the binding energies of Co 2p in PMo11Co, PMo11Co@UiO-66, and reused PMo11Co@UiO-66.
Entry | Catalyst | Amount of catalyst (mg) | Time (h) | Conversion (%) | TOF b (h-1) | Related work |
---|---|---|---|---|---|---|
1 | Blank | — | 6 | 3 | — | This work |
2 | UiO-66 | 10 | 6 | 3 | — | This work |
3 | PMo12@UiO-66 | 10 | 6 | 32 | 11 | This work |
4 | PMo11Co@UiO-66 | 10 | 6 | 52 | 19 c | This work |
5 | PMo11Co/UiO-66-imp | 10 | 6 | 40 | 15 c | This work |
6 | PMo12@COF-300 f | 10 | 3 | 63 | 44 | [ |
7 | Mo(CO)3-L@UiO-66 d | 100 | 4.5 | 98 | 19 | [ |
8 | PMo12@meso-organosilicates e | 100 | 6 | 58 | 4 | [ |
Table 2 Cyclooctene epoxidation performance of various catalyst samples a.
Entry | Catalyst | Amount of catalyst (mg) | Time (h) | Conversion (%) | TOF b (h-1) | Related work |
---|---|---|---|---|---|---|
1 | Blank | — | 6 | 3 | — | This work |
2 | UiO-66 | 10 | 6 | 3 | — | This work |
3 | PMo12@UiO-66 | 10 | 6 | 32 | 11 | This work |
4 | PMo11Co@UiO-66 | 10 | 6 | 52 | 19 c | This work |
5 | PMo11Co/UiO-66-imp | 10 | 6 | 40 | 15 c | This work |
6 | PMo12@COF-300 f | 10 | 3 | 63 | 44 | [ |
7 | Mo(CO)3-L@UiO-66 d | 100 | 4.5 | 98 | 19 | [ |
8 | PMo12@meso-organosilicates e | 100 | 6 | 58 | 4 | [ |
Fig. 8. Leaching (A) and recycling (B) experiments of PMo11Co@UiO-66. Reaction conditions: cyclooctene 5.0 mmol, t-BuOOH 5.0 mmol, PMo11Co@UiO-66 50 mg, solvent 15 ml, 334 K, 6 h. All epoxide selectivity was greater than 99%.
Fig. 9. Solvent effect on cyclooctene epoxidation. Reaction conditions: cyclooctene 1.0 mmol, t-BuOOH 1.0 mmol, PMo11Co@UiO-66 10 mg, solvent 3 ml, 334 K, 6 h. Selectivity for the epoxide is greater than 99%.
Entry | Olefin | Epoxide | Conversion c (%) | Selectivity c (%) | TOF (h-1) |
---|---|---|---|---|---|
1b | | | 55 | 69d | 10 |
2 | | | 68 | >99 | 12 |
3 | | | 61 | 71d | 11 |
4 | | | 63 | 74d | 12 |
5 | | | 16 | >99 | 3 |
6 | | | 12 | >99 | 2 |
7 | | | 42 | 69d | 8 |
Table 3 Epoxidation of olefins catalyzed by PMo11Co@UiO-66 a.
Entry | Olefin | Epoxide | Conversion c (%) | Selectivity c (%) | TOF (h-1) |
---|---|---|---|---|---|
1b | | | 55 | 69d | 10 |
2 | | | 68 | >99 | 12 |
3 | | | 61 | 71d | 11 |
4 | | | 63 | 74d | 12 |
5 | | | 16 | >99 | 3 |
6 | | | 12 | >99 | 2 |
7 | | | 42 | 69d | 8 |
Fig. 10. Conversion and selectivity during selective limonene oxidation. Reaction conditions: limonene 10 mmol, t-BuOOH 20 mmol, catalyst 100 mg, chloroform 30 mL, reaction temperature 334 K.
|
[1] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[2] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[3] | Peigong Liu, Tiejun Lin, Lei Guo, Xiaozhe Liu, Kun Gong, Taizhen Yao, Yunlei An, Liangshu Zhong. Tuning cobalt carbide wettability environment for Fischer-Tropsch to olefins with high carbon efficiency [J]. Chinese Journal of Catalysis, 2023, 48(5): 150-163. |
[4] | Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde [J]. Chinese Journal of Catalysis, 2023, 46(3): 11-27. |
[5] | Yujie Li, Yuanyuan Liu, Zeyan Wang, Peng Wang, Zhaoke Zheng, Hefeng Cheng, Ying Dai, Baibiao Huang. Enhanced photocatalytic H2O2 production over Pt(II) deposited boron containing metal-organic framework via suppressing the simultaneous decomposition [J]. Chinese Journal of Catalysis, 2023, 45(2): 132-140. |
[6] | Fenglei Lyu, Wei Hua, Huirong Wu, Hao Sun, Zhao Deng, Yang Peng. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1417-1432. |
[7] | Boyu Zhang, Jiafu Shi, Yang Zhao, Han Wang, Ziyi Chu, Yu Chen, Zhenhua Wu, Zhongyi Jiang. Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization [J]. Chinese Journal of Catalysis, 2022, 43(4): 1184-1191. |
[8] | Yingnan Zhao, Xing Qin, Xinyu Zhao, Xin Wang, Huaqiao Tan, Huiying Sun, Gang Yan, Haiwei Li, Wingkei Ho, Shun-cheng Lee. Polyoxometalates-doped Bi2O3-x/Bi photocatalyst for highly efficient visible-light photodegradation of tetrabromobisphenol A and removal of NO [J]. Chinese Journal of Catalysis, 2022, 43(3): 771-781. |
[9] | Junmin Huang, Jianmin Chen, Wangxi Liu, Jingwen Zhang, Junying Chen, Yingwei Li. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production [J]. Chinese Journal of Catalysis, 2022, 43(3): 782-792. |
[10] | Ling-Ling Zheng, Long-Shuai Zhang, Ying Chen, Lei Tian, Xun-Heng Jiang, Li-Sha Chen, Qiu-Ju Xing, Xiao-Zhen Liu, Dai-She Wu, Jian-Ping Zou. A new strategy for the fabrication of covalent organic framework-metal-organic framework hybrids via in-situ functionalization of ligands for improved hydrogen evolution reaction activity [J]. Chinese Journal of Catalysis, 2022, 43(3): 811-819. |
[11] | Zhaopeng Liu, Youming Ni, Zhongpan Hu, Yi Fu, Xudong Fang, Qike Jiang, Zhiyang Chen, Wenliang Zhu, Zhongmin Liu. Insights into effects of ZrO2 crystal phase on syngas-to-olefin conversion over ZnO/ZrO2 and SAPO-34 composite catalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 877-884. |
[12] | Yeqin Feng, Lin Qin, Junhao Zhang, Fangyu Fu, Huijie Li, Hua Xiang, Hongjin Lv. Wheel-shaped icosanuclear Cu-containing polyoxometalate catalyst: Mechanistic and stability studies on light-driven hydrogen generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 442-450. |
[13] | Jinpeng Yin, Xin Jin, Hao Xu, Yejun Guan, Rusi Peng, Li Chen, Jingang Jiang, Peng Wu. Structured binder-free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation [J]. Chinese Journal of Catalysis, 2021, 42(9): 1561-1575. |
[14] | You Xu, Kaili Ren, Rong Xu. In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1370-1378. |
[15] | Huihui Hu, Lingzhen Zeng, Zhe Li, Tianbao Zhu, Cheng Wang. Incorporating porphyrin-Pt in light-harvesting metal-organic frameworks for enhanced visible light-driven hydrogen production [J]. Chinese Journal of Catalysis, 2021, 42(8): 1345-1351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||