Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (5): 743-752.DOI: 10.1016/S1872-2067(20)63695-6
• Articles • Previous Articles Next Articles
Shipeng Tanga, Yang Xiaa, Jiajie Fanb, Bei Chenga, Jiaguo Yua,*(), Wingkei Hoc,#(
)
Received:
2020-06-17
Accepted:
2020-06-17
Online:
2021-05-18
Published:
2021-01-29
Contact:
Jiaguo Yu,Wingkei Ho
About author:
# E-mail: keithho@eduhk.hkSupported by:
Shipeng Tang, Yang Xia, Jiajie Fan, Bei Cheng, Jiaguo Yu, Wingkei Ho. Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts[J]. Chinese Journal of Catalysis, 2021, 42(5): 743-752.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63695-6
Fig. 4. (a,b) TEM and HRTEM images of C@CdS-HS. (c,d) TEM and HRTEM images of CdS-HS. (e) EDX mapping images of C@CdS-HS. The inset in (b) and (d) shows the corresponding SAED patterns.
Fig. 5. (a) Raman spectra (inset is the enlarged spectra) and (b) nitrogen adsorption-desorption isotherms (inset shows the pore size distribution) of C-HS, CdS-HS, and C@CdS-HS.
Samples | SBET (m2 g-1) | Average pore diameter (nm) | Total pore volume (cm3 g-1) |
---|---|---|---|
C-HS | 252 | 5.8 | 0.37 |
CdS-HS | 37 | 9.9 | 0.09 |
C@CdS-HS | 166 | 5.6 | 0.23 |
Table 1 SBET and pore parameters of C-HS, CdS-HS, and C@CdS-HS.
Samples | SBET (m2 g-1) | Average pore diameter (nm) | Total pore volume (cm3 g-1) |
---|---|---|---|
C-HS | 252 | 5.8 | 0.37 |
CdS-HS | 37 | 9.9 | 0.09 |
C@CdS-HS | 166 | 5.6 | 0.23 |
Fig. 6. (a) Photocatalytic H2-generation rates of the samples with 10 vol% lactic acid aqueous solution as a sacrificial reagent under simulated sunlight irradiation; (b) Cyclic photocatalytic H2-generation curves of C@CdS-HS/Pt.
Fig. 7. (a) UV-Vis-NIR DRS of C-HS, CdS-HS, and C@CdS-HS. (b) Band gap obtained from the Kubelka-Munk function of CdS-HS. (c-e) Infrared thermograms of CdS-HS, C@CdS-HS, and C-HS after illumination by a 760 nm LED for 1 min at RT.
Fig. 8. PL spectra (a) and TRPL decay curves (b) of CdS-HS and C@CdS-HS; TPR (c) and Nyquist plots (d) of C-HS, CdS-HS, CdS-HS/Pt, C@CdS-HS, and C@CdS-HS/Pt.
Samples | CPDdark (mV) | CPDlight (mV) | Wdark (eV) | Wlight (eV) | Ef(dark) (eV) | Ef(light) (eV) |
---|---|---|---|---|---|---|
CdS-HS | 195 | 62 | 4.445 | 4.312 | -4.445 | -4.312 |
C@CdS-HS | 329 | 205 | 4.579 | 4.455 | -4.579 | -4.455 |
C@CdS-HS/Pt | 363 | 249 | 4.613 | 4.499 | -4.613 | -4.499 |
C-HS | 406 | 406 | 4.656 | 4.656 | -4.656 | -4.656 |
Pt | 627 | 627 | 4.877 | 4.877 | -4.877 | -4.877 |
Table 2 CPD, W, and Ef of the samples before and after illumination.
Samples | CPDdark (mV) | CPDlight (mV) | Wdark (eV) | Wlight (eV) | Ef(dark) (eV) | Ef(light) (eV) |
---|---|---|---|---|---|---|
CdS-HS | 195 | 62 | 4.445 | 4.312 | -4.445 | -4.312 |
C@CdS-HS | 329 | 205 | 4.579 | 4.455 | -4.579 | -4.455 |
C@CdS-HS/Pt | 363 | 249 | 4.613 | 4.499 | -4.613 | -4.499 |
C-HS | 406 | 406 | 4.656 | 4.656 | -4.656 | -4.656 |
Pt | 627 | 627 | 4.877 | 4.877 | -4.877 | -4.877 |
[1] |
P. Gao, J. C. Liu, D. D. Sun, W. Ng, J. Hazard. Mater., 2013,250, 412-420.
DOI URL PMID |
[2] |
X. F. Ning, G. X. Lu, Nanoscale, 2020,12, 1213-1223.
URL PMID |
[3] | Z. D. Wei, M. Q. Xu, J. Y. Liu, W. Q. Guo, Z. Jiang, W. F. Shangguan, Chin. J. Catal., 2020,41, 103-113. |
[4] | X. Li, R. C. Shen, S. Ma, X. B. Chen, J. Xie, Appl. Surf. Sci., 2018,430, 53-107. |
[5] | L. J. Bai, X. T. Cai, J. J. Lu, L. N. Li, S. X. Zhong, L. Wu, P. J. Gong, J. R. Chen, S. Bai, ChemCatChem, 2018,10, 2107-2114. |
[6] |
A. Fujishima, K. Honda, Nature, 1972,238, 37-38.
URL PMID |
[7] | Z. Alam, B. Verma, A. S. K Sinha, Int. J. Hydrogen Energy, 2020,45, 175-189. |
[8] | Z. W. Zhang, Q. H. Li, X. Q. Qiao, D. F. Hou, D. S. Li, Chin. J. Catal., 2019,40, 371-379. |
[9] | Q. Q. Bi, J. W. Wang, J. X. Lv, J. Wang, W. Zhang, T. B. Lu, ACS Catal., 2018,8, 11815-11821. |
[10] | W. Zhao, J. C. Liu, Z. X. Ding, J. H. Zhang, X. Y. Wang, J. Alloys Compd., 2020,813, 152234. |
[11] |
Y. Liu, Y. J. Ma, W. W. Liu, Y. Y. Shang, A. Q. Zhu, P. F. Tan, X. Xiong, J. Pan, J. Colloid Interface Sci., 2018,513, 222-230.
DOI URL PMID |
[12] | J. G. Yu, Y. F. Yu, P. Zhou, W. Xiao, B. Cheng, Appl. Catal. B, 2014,156, 184-191. |
[13] | H. N. Ge, F. Y. Xu, B. Cheng, J. G. Yu, W. K. Ho, ChemCatChem, 2019,11, 6301-6309. |
[14] | W. L. Yu, S. Zhang, J. X. Chen, P. F. Xia, M. H. Richter, L. F. Chen, W. Xu, J. P. Jin, S. P. Chen, T. Y. Peng, J. Mater. Chem. A, 2018,6, 15668-15674. |
[15] | Z. Zhao, Y. B. Xing, H. B. Li, P. Y. Feng, Z. C. Sun, Sci. China Mater., 2018,61, 851-860. |
[16] | A. Y. Meng, B. C. Zhu, B. Zhong, L. Y. Zhang, B. Cheng, Appl. Surf. Sci., 2017,422, 518-527. |
[17] | T. M. Di, Q. L. Xu, W. K. Ho, H. Tang, Q. J. Xiang, J. G. Yu, ChemCatChem, 2019,11, 1394-1411. |
[18] | J. Fu, B. B. Chang, Y. L. Tian, F. N. Xi, X. P. Dong, J. Mater. Chem. A, 2013,1, 3083-3090. |
[19] | S. Wang, B. C. Zhu, M. J. Liu, L. Y. Zhang, J. G. Yu, M. H. Zhou, Appl. Catal. B, 2019,243, 19-26. |
[20] |
J. X. Lv, Z. M. Zhang, J. Wang, X. L. Lu, W. Zhang, T. B. Lu, ACS Appl. Mater. Interfaces, 2019,11, 2655-2661.
URL PMID |
[21] | X. L.Yin, L. L. Li, M. L. Liu, D. C. Li, L. Shang, J. M. Dou, Chem. Eng. J., 2019,370, 305-313. |
[22] | R. H. Mu, Y. H. Ao, T. F. Wu, C. Wang, P. F. Wang, J. Alloys Compd., 2020,812, 151990. |
[23] | S. W. Du, X. Lin, C. H. Li, G. J. Li, B. B. Zheng, Y. Liu, H. Xu, P. F. Fang, Chem. Eng. J., 2020,389, 124431. |
[24] | T. M. Di, B. C. Zhu, J. Zhang, B. Cheng, J. G. Yu, Appl. Surf. Sci., 2016,389, 775-782. |
[25] | C. Zhu, C. G. Liu, Y. J. Zhou, Y. J. Fu, S. J. Guo, H. Li, S. Q. Zhao, H. Huang, Y. Liu, Z. H. Kang, Appl. Catal. B, 2017,216, 114-121. |
[26] | L. Li, J. Wu, B. B. Liu, X. J. Liu, C. Li, Y. Gong, Y. L. Huang, L. K. Pan, Catal. Today, 2018,315, 110-116. |
[27] | S. Ma, X. M. Xu, J. Xie, X. Li, Chin. J. Catal., 2017,38, 1970-1980. |
[28] | A. Y. Meng, L. Y. Zhang, B. Cheng, J. G. Yu, Adv. Mater., 2019,31, 1807660. |
[29] | C. Cheng, J. W. Shi, F. Du, S. C. Zong, X. J. Guan, Y. Z. Zhang, M. C. Liu, L. J. Guo, Catal. Sci. Technol., 2019,9, 7016-7022. |
[30] | Y. Xia, J. G. Yu, Chem, 2020,6, 1039-1040. |
[31] | C. H. Li, S. W. Du, H. M. Wang, S. B. Naghadeh, A. Allen, X. Lin, G. J. Li, Y. Liu, H. Xu, C. Q. He, J. Z. Zhang, P. F. Fang, Chem. Eng. J., 2019,378, 122089. |
[32] | J. Li, Y. Peng, X. H. Qian, J. Lin, Appl. Surf. Sci., 2018,452, 437-442. |
[33] | P. Zhou, F. Lv, N. Li, Y. L. Zhang, Z. J. Mu, Y. H. Tang, J. P. Lai, Y. G. Chao, M. C. Luo, F. Lin, J. H. Zhou, D. Su, S. J. Guo, Nano Energy, 2019,56, 127-137. |
[34] | D. D. Ren, R. C. Shen, Z. M. Jiang, X. Y. Lu, X. Li, Chin. J. Catal., 2020,41, 31-40. |
[35] | X. F. Zhou, Q. Z. Gao, S. Y. Yang, Y. P. Fang, Chin. J. Catal., 2020,41, 62-71. |
[36] | P. Y. Kuang, M. Sayed, J. J. Fan, B. Cheng, J. G. Yu, Adv. Energy Mater., 2020,10, 1903802. |
[37] | Z. K. Zhao, G. F. Ge, D. Zhang, ChemCatChem, 2018,10, 62-123. |
[38] | C. B. Bie, B. C. Zhu, F. Y. Xu, L. Y. Zhang, J. G. Yu, Adv. Mater., 2019,31, 1902868. |
[39] | S. Fang, Y. Xia, K. L. Lv, Q. Li, J. Sun, M. Li, Appl. Catal. B, 2016,185, 225-232. |
[40] | T. Liu, L. Y. Zhang, B. Cheng, J. G. Yu, Adv. Energy Mater., 2019,9, 1803900. |
[41] | Z. W. Zhang, Y. M. Zhou, Y. W. Zhang, X. L. Sheng, S. J. Zhou, S. M. Xiang, Appl. Surf. Sci., 2013,286, 344-350. |
[42] | T. Liu, L. Y. Zhang, B. Cheng, W. You, J. G. Yu, Chem. Commun., 2018,54, 3731-3734. |
[43] | C. B. Bie, J. W. Fu, B. Cheng, L. Y. Zhang, Appl. Surf. Sci., 2018,462, 606-614. |
[44] | D. D. Ren, Z. Z. Liang, Y. H. Ng, P. Zhang, Q. J. Xiang, X. Li, Chem. Eng. J., 2020,390, 124496. |
[45] | X. L. Xiang, B. C. Zhu, B. Cheng, J. G. Yu, H. J. Lv, Small, 2020,16, 2001024. |
[46] | T. M. Di, B. Cheng, W. K. Ho, J. G. Yu, H. Tang, Appl. Surf. Sci., 2019,470, 196-204. |
[47] | Q. Liang, S. N. Cui, C. H. Liu, S. Xu, C. Yao, Z. Y. Li, Chem. Eng. J., 2019,364, 102-110. |
[48] |
Y. L. Yang, D. N. Zhang, Q. J. Xiang, Nanoscale, 2019,11, 18797-18805.
URL PMID |
[49] | A. Khan, S. M. Islam, S. Ahmed, R. R. Kumar, M. R. Habib, K. Huang, M. Hu, X. G. Yu, D. R. Yang, Adv. Sci., 2018,5, 1800050. |
[50] | K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 1985,57, 603-619. |
[51] | M. Kruk, M. Jaroniec, Chem. Mater., 2001,13, 3169-3183. |
[52] | J. X. Xu, X. M. Yan, Y. H. Qi, Y. L. Fu, C. Wang, L. Wang, Chem. Eng. J., 2019,375, 122053. |
[53] | X. Y. Meng, C. C. Zhang, C. Z. Dong, W. J. Sun, D. Ji, Y. Ding, Chem. Eng. J., 2020,389, 124432. |
[54] | Y. Xia, B. Cheng, J. J. Fan, J. G. Yu, G. Liu, Sci. China Mater., 2020,63, 552-565. |
[55] | S. J. Qiu, Y. L. Shen, G. J. Wei, S. Yao, W. Xi, M. Shu, R. Si, M. Zhang, J. F. Zhu, C. H. An, Appl. Catal. B, 2019,259, 118036. |
[56] | L. H. Li, Z. X. Deng, L. L. Yu, Z. Y. Lin, W. L. Wang, G. W. Yang, Nano Energy, 2016,27, 103-113. |
[57] | J. W. Fu, B. C. Zhu, W. You, M. Jaroniec, J. G. Yu, Appl. Catal. B, 2018,220, 148-160. |
[58] |
Y. Xia, B. Cheng, J. J. Fan, J. G. Yu, G. Liu, Small, 2019,15, 1902459.
DOI URL |
[59] |
Q. H. Deng, T. F. Miao, Z. Q. Wang, Y. Xu, X. L. Fu, Chem. Eng. J., 2019,378, 122139.
DOI URL |
[60] | F. F. Mei, Z. Li, K. Dai, J. F. Zhang, C. H. Liang, Chin. J. Catal., 2020,41, 41-49. |
[61] | L. Cheng, D. N. Zhang, Y. L. Liao, J. J. Fan, Q. J. Xiang, Chin. J. Catal., 2021,42, 131-140. |
[1] | Qinqin Liu, Xudong He, Jinjun Peng, Xiaohui Yu, Hua Tang, Jun Zhang. Hot-electron-assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2021, 42(9): 1478-1487. |
[2] | Li Zhu, Yiyang Lin, Kang Liu, Emiliano Cortés, Hongmei Li, Junhua Hu, Akira Yamaguchi, Xiaoliang Liu, Masahiro Miyauchi, Junwei Fu, Min Liu. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products [J]. Chinese Journal of Catalysis, 2021, 42(9): 1500-1508. |
[3] | Fang Li, Xiaoyang Yue, Haiping Zhou, Jiajie Fan, Quanjun Xiang. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616. |
[4] | Kaipeng Cao, Dong Fan, Shu Zeng, Benhan Fan, Nan Chen, Mingbin Gao, Dali Zhu, Linying Wang, Peng Tian, Zhongmin Liu. Organic-free synthesis of MOR nanoassemblies with excellent DME carbonylation performance [J]. Chinese Journal of Catalysis, 2021, 42(9): 1468-1477. |
[5] | Junwei Chen, Zuqiao Ou, Haixin Chen, Shuqin Song, Kun Wang, Yi Wang. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1297-1326. |
[6] | Anuj Kumar, Ying Zhang, Yin Jia, Wen Liu, Xiaoming Sun. Redox chemistry of N4-Fe 2+ in iron phthalocyanines for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(8): 1404-1412. |
[7] | Longfu Wei, Changlin Yu, Kai Yang, Qizhe Fan, Hongbing Ji. Recent advances in VOCs and CO removal via photothermal synergistic catalysis [J]. Chinese Journal of Catalysis, 2021, 42(7): 1078-1095. |
[8] | Jing-Wen Zhang, Lun Pan, Xiangwen Zhang, Chengxiang Shi, Ji-Jun Zou. Donor-acceptor carbon nitride with electron-withdrawing chlorine group to promote exciton dissociation [J]. Chinese Journal of Catalysis, 2021, 42(7): 1168-1175. |
[9] | Bin Huang, Yifan Wu, Bibo Chen, Yong Qian, Naigen Zhou, Neng Li. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations [J]. Chinese Journal of Catalysis, 2021, 42(7): 1160-1167. |
[10] | Jingping Zhong, Kexin Huang, Wentao Xu, Huaguo Tang, Muhammad Waqas, Youjun Fan, Ruixiang Wang, Wei Chen, Yixuan Wang. New strategy of S,N co-doping of conductive-copolymer-derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electrocatalytic oxidation of methanol [J]. Chinese Journal of Catalysis, 2021, 42(7): 1205-1215. |
[11] | Yazhi Cai, Li Tao, Gen Huang, Nana Zhang, Yuqin Zou, Shuangyin Wang. Regulating carbon work function to boost electrocatalytic activity for the oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(6): 938-944. |
[12] | Naixu Li, Meiyou Huang, Jiancheng Zhou, Maochang Liu, Dengwei Jing. MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O [J]. Chinese Journal of Catalysis, 2021, 42(5): 781-794. |
[13] | Zhou Ren, Yang Liu, Yuan Lyu, Xiangen Song, Changyong Zheng, Zheng Jiang, Yunjie Ding. Quaternary phosphonium polymer-supported dual-ionically bound [Rh(CO)I3]2- catalyst for heterogeneous ethanol carbonylation [J]. Chinese Journal of Catalysis, 2021, 42(4): 606-617. |
[14] | Zhifeng Dai, Yongquan Tang, Fei Zhang, Yubing Xiong, Sai Wang, Qi Sun, Liang Wang, Xiangju Meng, Leihong Zhao, Feng-Shou Xiao. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(4): 618-626. |
[15] | Yang Li, Dainan Zhang, Jiajie Fan, Quanjun Xiang. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2021, 42(4): 627-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||