Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (7): 1078-1095.DOI: 10.1016/S1872-2067(20)63721-4
• Reviews • Previous Articles Next Articles
Longfu Weia, Changlin Yua,*(), Kai Yangb, Qizhe Fana, Hongbing Jia,#(
)
Received:
2020-09-14
Accepted:
2020-10-09
Online:
2021-07-18
Published:
2020-12-10
Contact:
Changlin Yu,Hongbing Ji
About author:
# E-mail: jihb@mail.sysu.edu.cnSupported by:
Longfu Wei, Changlin Yu, Kai Yang, Qizhe Fan, Hongbing Ji. Recent advances in VOCs and CO removal via photothermal synergistic catalysis[J]. Chinese Journal of Catalysis, 2021, 42(7): 1078-1095.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63721-4
Fig. 2. Schematic of a typical photothermal synergistic catalytic setup. Reprinted with permission from Ref. [63]. Copyright (2015) American Chemical Society.
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Anatase TiO2 {001} | benzene | Hg | RT | 65 | 42 | — | — | — | 290 | 65 | 78 | [ | ||||||||||||||||
Rutile TiO2 | benzene | UV | RT | 160 | 50 | 280 | 160 | 18 | 280 | 160 | 70 | [ | ||||||||||||||||
TiO2 | benzene | UV | 40 | 60 | 40 | 240 | 60 | 15 | 240 | 60 | 100 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | UV | — | — | — | 240 | 60 | 89 | 240 | 30 | 100 | [ | ||||||||||||||||
TiO2 | benzene | fluorescent black light bulb | — | — | — | 140 | 300 | 30 | 140 | 300 | 86 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | fluorescent black light bulb | — | — | — | 70 | 120 | 8 | 70 | 120 | 100 | [ | ||||||||||||||||
Zr-doped Pt/TiO2 | benzene | UV | 50 | 150 | 65 | 200 | 150 | 43 | 200 | 150 | 97 | [ | ||||||||||||||||
Pt-loaded TiO2/ZrO2 | benzene | Germicidal lamps | — | — | — | — | — | — | 150 | 960 | 100 | [ | ||||||||||||||||
MnO2 | benzene | Xe | — | — | — | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Co3O4 | benzene | Xe | — | — | — | — | — | — | — | 40 | 100 | [ | ||||||||||||||||
MnxFeOy-70 | benzene | Xe | — | — | — | — | — | — | 244 | 25 | 100 | [ | ||||||||||||||||
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Pt/CeO2-MM | benzene | Xe | — | — | — | — | — | — | — | 25 | 100 | [ | ||||||||||||||||
Pt/BiVO4/TiO2 | benzene | Xe | 30 | — | 8 | 80 | — | 28 | 80 | — | 100 | [ | ||||||||||||||||
Pt/LaVO4/TiO2 | benzene | Xe | 30 | — | 12 | 70 | — | 20 | 70 | — | 100 | [ | ||||||||||||||||
Pt-TiO2/CeO2-MnO2 | benzene | UV | — | — | — | — | — | — | — | 600 | 94.5 | [ | ||||||||||||||||
Pt-TiO2/Ce-MnOx | benzene | germicidal lamps | — | — | — | — | — | — | 180 | 720 | 100 | [ | ||||||||||||||||
TiO2/CeO2 | benzene | Xe | — | — | — | — | — | — | — | 60 | 82 | [ | ||||||||||||||||
Co3O4/TiO2 | benzene | UV-vis-IR | RT | 40 | 48 | 240 | 40 | 80 | — | 40 | 95 | [ | ||||||||||||||||
MnOx/TiO2 | benzene | Xe | 40 | 40 | 81 | 300 | 40 | 50 | — | 40 | 96.5 | [ | ||||||||||||||||
CeMnxOy/TiO2 | benzene | Xe | 40 | — | — | — | — | — | 250 | 20 | 100 | [ | ||||||||||||||||
OMS-2 | benzene | Xe | RT | 25 | 18 | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Mg-OMS-2 | benzene | Xe | — | — | — | 202 | — | 50 | 220 | 30 | 97.2 | [ | ||||||||||||||||
Fe-OMS-2 | benzene | Xe | — | — | — | 224 | — | 50 | 217 | 30 | 98.8 | [ | ||||||||||||||||
Ce-OMS-2 | benzene | Xe | RT | 20 | 0 | 180 | — | 70 | — | 20 | 100 | [ | ||||||||||||||||
CeO2/OMS-2 | benzene | Xe | — | — | — | 180 | — | 10 | — | 20 | 60 | [ | ||||||||||||||||
OMS-2/SnO2 | benzene | UV-vis-IR | — | — | — | 225 | — | 50 | — | 60 | 88 | [ | ||||||||||||||||
Ag/F-SrTiO3 | benzene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Ag/F-SrTiO3 | toluene | Xe | RT | 120 | 50 | 90 | 120 | 14 | 90 | 120 | 85 | [ | ||||||||||||||||
Ag/F-SrTiO3 | xylene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Pd-CeO2 | toluene | Xe | 177 | — | 50 | 222 | — | 50 | 227 | — | 82 | [ | ||||||||||||||||
Pt/γ-Al2O3 | toluene | simulated sunlight | — | — | — | — | — | — | 165 | 20 | 87 | [ | ||||||||||||||||
Mn, Ce and Co oxides/Al2O3 | toluene | UV | — | — | — | 250 | 300 | 61 | 250 | 300 | 84 | [ | ||||||||||||||||
SiO2@Pt@ZrO2 | toluene | Xe | RT | 60 | 18 | 150 | 60 | 80 | 150 | 60 | 100 | [ | ||||||||||||||||
Pd-Ag@CeO2 | toluene | Xe | — | — | — | 130 | — | 50 | 88 | — | 50 | [ | ||||||||||||||||
Ag3PO4/Ag/SrTiO3 | toluene | Xe | RT | 360 | 90 | 90 | 180 | 13 | 90 | 180 | 92 | [ | ||||||||||||||||
Pt-La2O3/TiO2 | toluene | Xe | 25 | — | 85 | 150 | — | 25 | 150 | — | 100 | [ | ||||||||||||||||
Pt-rGO-TiO2 | toluene | IR light | — | — | — | — | — | — | — | — | 95 | [ | ||||||||||||||||
Pt-Na/TiO2 | toluene | Xe | — | — | — | 150 | — | 31 | 150 | — | 82 | [ | ||||||||||||||||
Ce-OMS-2 | toluene | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
CeO2/LaMnO3 | toluene | IR light | — | — | — | — | — | — | — | — | 89 | [ | ||||||||||||||||
NiCo2O4 | toluene | simulated sunlight | — | — | — | — | — | — | — | — | 93 | [ | ||||||||||||||||
LaSmMnNiO6 | toluene | Xe | — | — | — | — | — | — | 275 | — | 100 | [ | ||||||||||||||||
Au/TiO2 | ethanol | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/TiO2 | ethanol | UV | — | — | — | 200 | — | 18 | 200 | — | 100 | [ | ||||||||||||||||
MnOx-CeO2 | formaldehyde | Xe | 25 | 180 | 42.3 | 75 | 180 | 27.1 | 75 | 180 | 90.4 | [ | ||||||||||||||||
MnOx/Co3O4 | formaldehyde | Xe | 25 | 180 | 20 | 80 | 180 | 36 | 80 | 180 | 84 | [ | ||||||||||||||||
graphene/MnO2 | formaldehyde | Xe | — | — | — | — | 40 | 80 | — | 40 | 88 | [ | ||||||||||||||||
BiOI | formaldehyde | Xe | RT | 45 | 70 | 60 | 45 | 37.8 | 60 | 45 | 88.9 | [ | ||||||||||||||||
Pt-TiO2/SiO2 | formaldehyde | UV | — | — | — | — | — | — | 107 | 300 | 100 | [ | ||||||||||||||||
CrxO/TiO2 | acetaldehyde | blue LED | — | — | — | — | — | — | 60 | 120 | 100 | [ | ||||||||||||||||
WO3-x | acetaldehyde | UV | — | — | — | — | — | — | 60 | 80 | 100 | [ | ||||||||||||||||
OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Ce-OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/CeO2-MM | acetone | Xe | — | — | — | — | — | — | — | 20 | 95 | [ | ||||||||||||||||
nano ZnO | acetone | Hg | — | — | — | — | — | — | 240 | — | 100 | [ | ||||||||||||||||
Pt/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 34 | 90 | — | 100 | [ | ||||||||||||||||
Pd/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 19.2 | 90 | — | 100 | [ | ||||||||||||||||
Au/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 4.5 | 90 | — | 94.9 | [ | ||||||||||||||||
SS-Co3O4 | propylene | Xe | — | — | — | — | — | — | — | 10 | 100 | [ | ||||||||||||||||
SS-Co3O4 | propane | Xe | — | — | — | — | — | — | — | 15 | 100 | [ | ||||||||||||||||
manganese oxide | propylene | Xe | — | — | — | — | — | — | 205 | — | 90 | [ | ||||||||||||||||
manganese oxide | propane | Xe | — | — | — | — | — | — | 263 | — | 90 | [ | ||||||||||||||||
Pt/TiO2-WO3 | propane | UV/Vis | — | — | — | 324 | — | 70 | 90 | — | 70 | [ | ||||||||||||||||
PtCu/CeO2 | n-pentane | Xe | 30 | 120 | 5 | 400 | 120 | 80 | 400 | 120 | 95 | [ | ||||||||||||||||
LaMnO3 | styrene | Xe | RT | 40 | 25 | 140 | 40 | 68 | 140 | 40 | 96.6 | [ |
Table 1 Summary and comparison of the performance of photocatalytic (PC), thermocatalytic (TC), and PTC degradation of VOCs.
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Anatase TiO2 {001} | benzene | Hg | RT | 65 | 42 | — | — | — | 290 | 65 | 78 | [ | ||||||||||||||||
Rutile TiO2 | benzene | UV | RT | 160 | 50 | 280 | 160 | 18 | 280 | 160 | 70 | [ | ||||||||||||||||
TiO2 | benzene | UV | 40 | 60 | 40 | 240 | 60 | 15 | 240 | 60 | 100 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | UV | — | — | — | 240 | 60 | 89 | 240 | 30 | 100 | [ | ||||||||||||||||
TiO2 | benzene | fluorescent black light bulb | — | — | — | 140 | 300 | 30 | 140 | 300 | 86 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | fluorescent black light bulb | — | — | — | 70 | 120 | 8 | 70 | 120 | 100 | [ | ||||||||||||||||
Zr-doped Pt/TiO2 | benzene | UV | 50 | 150 | 65 | 200 | 150 | 43 | 200 | 150 | 97 | [ | ||||||||||||||||
Pt-loaded TiO2/ZrO2 | benzene | Germicidal lamps | — | — | — | — | — | — | 150 | 960 | 100 | [ | ||||||||||||||||
MnO2 | benzene | Xe | — | — | — | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Co3O4 | benzene | Xe | — | — | — | — | — | — | — | 40 | 100 | [ | ||||||||||||||||
MnxFeOy-70 | benzene | Xe | — | — | — | — | — | — | 244 | 25 | 100 | [ | ||||||||||||||||
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Pt/CeO2-MM | benzene | Xe | — | — | — | — | — | — | — | 25 | 100 | [ | ||||||||||||||||
Pt/BiVO4/TiO2 | benzene | Xe | 30 | — | 8 | 80 | — | 28 | 80 | — | 100 | [ | ||||||||||||||||
Pt/LaVO4/TiO2 | benzene | Xe | 30 | — | 12 | 70 | — | 20 | 70 | — | 100 | [ | ||||||||||||||||
Pt-TiO2/CeO2-MnO2 | benzene | UV | — | — | — | — | — | — | — | 600 | 94.5 | [ | ||||||||||||||||
Pt-TiO2/Ce-MnOx | benzene | germicidal lamps | — | — | — | — | — | — | 180 | 720 | 100 | [ | ||||||||||||||||
TiO2/CeO2 | benzene | Xe | — | — | — | — | — | — | — | 60 | 82 | [ | ||||||||||||||||
Co3O4/TiO2 | benzene | UV-vis-IR | RT | 40 | 48 | 240 | 40 | 80 | — | 40 | 95 | [ | ||||||||||||||||
MnOx/TiO2 | benzene | Xe | 40 | 40 | 81 | 300 | 40 | 50 | — | 40 | 96.5 | [ | ||||||||||||||||
CeMnxOy/TiO2 | benzene | Xe | 40 | — | — | — | — | — | 250 | 20 | 100 | [ | ||||||||||||||||
OMS-2 | benzene | Xe | RT | 25 | 18 | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Mg-OMS-2 | benzene | Xe | — | — | — | 202 | — | 50 | 220 | 30 | 97.2 | [ | ||||||||||||||||
Fe-OMS-2 | benzene | Xe | — | — | — | 224 | — | 50 | 217 | 30 | 98.8 | [ | ||||||||||||||||
Ce-OMS-2 | benzene | Xe | RT | 20 | 0 | 180 | — | 70 | — | 20 | 100 | [ | ||||||||||||||||
CeO2/OMS-2 | benzene | Xe | — | — | — | 180 | — | 10 | — | 20 | 60 | [ | ||||||||||||||||
OMS-2/SnO2 | benzene | UV-vis-IR | — | — | — | 225 | — | 50 | — | 60 | 88 | [ | ||||||||||||||||
Ag/F-SrTiO3 | benzene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Ag/F-SrTiO3 | toluene | Xe | RT | 120 | 50 | 90 | 120 | 14 | 90 | 120 | 85 | [ | ||||||||||||||||
Ag/F-SrTiO3 | xylene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Pd-CeO2 | toluene | Xe | 177 | — | 50 | 222 | — | 50 | 227 | — | 82 | [ | ||||||||||||||||
Pt/γ-Al2O3 | toluene | simulated sunlight | — | — | — | — | — | — | 165 | 20 | 87 | [ | ||||||||||||||||
Mn, Ce and Co oxides/Al2O3 | toluene | UV | — | — | — | 250 | 300 | 61 | 250 | 300 | 84 | [ | ||||||||||||||||
SiO2@Pt@ZrO2 | toluene | Xe | RT | 60 | 18 | 150 | 60 | 80 | 150 | 60 | 100 | [ | ||||||||||||||||
Pd-Ag@CeO2 | toluene | Xe | — | — | — | 130 | — | 50 | 88 | — | 50 | [ | ||||||||||||||||
Ag3PO4/Ag/SrTiO3 | toluene | Xe | RT | 360 | 90 | 90 | 180 | 13 | 90 | 180 | 92 | [ | ||||||||||||||||
Pt-La2O3/TiO2 | toluene | Xe | 25 | — | 85 | 150 | — | 25 | 150 | — | 100 | [ | ||||||||||||||||
Pt-rGO-TiO2 | toluene | IR light | — | — | — | — | — | — | — | — | 95 | [ | ||||||||||||||||
Pt-Na/TiO2 | toluene | Xe | — | — | — | 150 | — | 31 | 150 | — | 82 | [ | ||||||||||||||||
Ce-OMS-2 | toluene | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
CeO2/LaMnO3 | toluene | IR light | — | — | — | — | — | — | — | — | 89 | [ | ||||||||||||||||
NiCo2O4 | toluene | simulated sunlight | — | — | — | — | — | — | — | — | 93 | [ | ||||||||||||||||
LaSmMnNiO6 | toluene | Xe | — | — | — | — | — | — | 275 | — | 100 | [ | ||||||||||||||||
Au/TiO2 | ethanol | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/TiO2 | ethanol | UV | — | — | — | 200 | — | 18 | 200 | — | 100 | [ | ||||||||||||||||
MnOx-CeO2 | formaldehyde | Xe | 25 | 180 | 42.3 | 75 | 180 | 27.1 | 75 | 180 | 90.4 | [ | ||||||||||||||||
MnOx/Co3O4 | formaldehyde | Xe | 25 | 180 | 20 | 80 | 180 | 36 | 80 | 180 | 84 | [ | ||||||||||||||||
graphene/MnO2 | formaldehyde | Xe | — | — | — | — | 40 | 80 | — | 40 | 88 | [ | ||||||||||||||||
BiOI | formaldehyde | Xe | RT | 45 | 70 | 60 | 45 | 37.8 | 60 | 45 | 88.9 | [ | ||||||||||||||||
Pt-TiO2/SiO2 | formaldehyde | UV | — | — | — | — | — | — | 107 | 300 | 100 | [ | ||||||||||||||||
CrxO/TiO2 | acetaldehyde | blue LED | — | — | — | — | — | — | 60 | 120 | 100 | [ | ||||||||||||||||
WO3-x | acetaldehyde | UV | — | — | — | — | — | — | 60 | 80 | 100 | [ | ||||||||||||||||
OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Ce-OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/CeO2-MM | acetone | Xe | — | — | — | — | — | — | — | 20 | 95 | [ | ||||||||||||||||
nano ZnO | acetone | Hg | — | — | — | — | — | — | 240 | — | 100 | [ | ||||||||||||||||
Pt/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 34 | 90 | — | 100 | [ | ||||||||||||||||
Pd/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 19.2 | 90 | — | 100 | [ | ||||||||||||||||
Au/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 4.5 | 90 | — | 94.9 | [ | ||||||||||||||||
SS-Co3O4 | propylene | Xe | — | — | — | — | — | — | — | 10 | 100 | [ | ||||||||||||||||
SS-Co3O4 | propane | Xe | — | — | — | — | — | — | — | 15 | 100 | [ | ||||||||||||||||
manganese oxide | propylene | Xe | — | — | — | — | — | — | 205 | — | 90 | [ | ||||||||||||||||
manganese oxide | propane | Xe | — | — | — | — | — | — | 263 | — | 90 | [ | ||||||||||||||||
Pt/TiO2-WO3 | propane | UV/Vis | — | — | — | 324 | — | 70 | 90 | — | 70 | [ | ||||||||||||||||
PtCu/CeO2 | n-pentane | Xe | 30 | 120 | 5 | 400 | 120 | 80 | 400 | 120 | 95 | [ | ||||||||||||||||
LaMnO3 | styrene | Xe | RT | 40 | 25 | 140 | 40 | 68 | 140 | 40 | 96.6 | [ |
Fig. 3. (a) Change in benzene concentration with time; (b) CO2 production rate from benzene in photocatalytic, thermocatalytic, and photothermocatalytic systems. Reprinted with permission from Ref. [70]. Copyright (2016) Elsevier.
Fig. 4. Schematic of photothermal synergistic catalysis for benzene oxidation on Pt-loaded TiO2/ZrO2 catalyst. Reprinted with permission from Ref. [75]. Copyright 2012, Elsevier.
Fig. 5. Scanning electron microscopy images (a,b) and high-resolution transmission electron microscopy image (c) of R-MnO2-HS; (d) CO2 concentration and benzene conversion (concentration/initial concentration (C/C0)) over R-MnO2-HS and TiO2 (P25) catalysts under full solar spectrum irradiation. Reprinted with permission from Ref. [77]. Copyright (2019) American Chemical Society.
Fig. 7. Schematic of photothermal synergistic catalysis for benzene oxidation over TiO2/CeO2 (a) and Co3O4/TiO2 (b) catalysts. (a) Reprinted with permission from Ref. [63]. Copyright 2015, American Chemical Society; (b) Reprinted with permission from Ref. [97]. Copyright (2018) American Chemical Society.
Fig. 8. Schematic of photothermal synergistic catalysis over the OMS-2 catalyst. Reprinted with permission from Ref. [100]. Copyright (2015) Elsevier.
Fig. 9. (a) UV-vis absorption spectra of the catalysts; (b) Schematic illustration of photothermal synergistic catalysis for VOCs on Ag/F-codoped SrTiO3 catalysts. Reprinted with permission from Ref. [105]. Copyright (2018) American Chemical Society.
Fig. 10. Schematic of photothermal synergistic catalysis for VOCs degradation over a Pt/γ-Al2O3 catalyst. Reprinted with permission from Ref. [107]. Copyright (2018) American Chemical Society.
Fig. 11. (a) Synthesis of core/shell SiO2@Pt@ZrO2 nanostructures; (b) High-resolution transmission electron microscopy image of the SiO2@Pt@ZrO2 catalyst; (c) Schematic of photothermal synergistic catalysis over the SiO2@Pt@ZrO2 catalyst for VOCs removal. Reprinted with permission from Ref. [110]. Copyright (2019) American Chemical Society.
Fig. 12. Schematic of photothermal synergistic catalytic VOCs degradation over the Ag3PO4/Ag/SrTiO3 catalyst. Reprinted with permission from Ref. [112]. Copyright (2019) American Chemical Society.
Fig. 13. Schematic of the photothermal synergistic catalytic degradation of VOCs over the Pt-rGO-TiO2 catalyst. Reprinted with permission from Ref. [114]. Copyright (2018) Elsevier.
Fig. 14. (a) UV-vis diffuse reflectance spectroscopy spectra of the prepared samples; (b) Toluene conversion over the ACo2O4 catalysts under simulated sunlight irradiation. Reprinted with permission from Ref. [117]. Copyright (2019) Elsevier.
Fig. 15. Schematic of photothermal synergistic catalysis for ethanol oxidation over the Au/TiO2 catalyst. Reprinted with permission from Ref. [119]. Copyright (2016) American Chemical Society.
Fig. 16. (a) Change in CO2 concentration during the photothermocatalytic degradation of formaldehyde over CoxMny catalysts at 40 °C; (b) Formaldehyde degradation rates under different reaction conditions over Co1Mn1 catalyst. Reprinted with permission from Ref. [122]. Copyright (2016) Elsevier.
Fig. 17. Schematic of photothermal synergistic catalysis for ethanol oxidation on the WO3-x catalyst. Reprinted with permission from Ref. [127]. Copyright (2017) Elsevier.
Fig. 18. Schematic of photothermal synergistic catalysis for VOCs oxidation on the PtCu/CeO2 catalyst. Reprinted with permission from Ref. [134]. Copyright (2019) Elsevier.
Fig. 19. Electron transfer and Fermi level of the Au/TiO2-C3N4 catalyst under visible light irradiation. Reprinted with permission from Ref. [140]. Copyright (2016) Royal Society of Chemistry.
Fig. 20. Schematic of photothermal synergistic catalysis for CO methanation on Ru/TiO2 catalyst under the UV light irradiation. Reprinted with permission from Ref. [142]. Copyright (2014) Elsevier.
Fig. 21. Schematic of photothermal synergistic catalytic FTS on the Ru/graphene catalyst. Reprinted with permission from Ref. [145]. Copyright (2015) American Chemical Society.
Fig. 22. Reaction route for photothermal synergistic catalytic CO oxidation over the Pd/CeO2 catalyst under visible light illumination. Reprinted with permission from Ref. [106]. Copyright (2016) American Chemical Society.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[6] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[7] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[8] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[9] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[10] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[11] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[12] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[13] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[14] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[15] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||