Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (12): 2287-2295.DOI: 10.1016/S1872-2067(20)63771-8
• Articles • Previous Articles Next Articles
Bingheng Cen, Cen Tang, Jiqing Lu, Jian Chen#(), Mengfei Luo*(
)
Received:
2020-12-23
Accepted:
2020-12-23
Online:
2021-12-18
Published:
2021-01-31
Contact:
Jian Chen,Mengfei Luo
About author:
# E-mail: jianchen@zjnu.cnSupported by:
Bingheng Cen, Cen Tang, Jiqing Lu, Jian Chen, Mengfei Luo. Different roles of MoO3 and Nb2O5 promotion in short-chain alkane combustion over Pt/ZrO2 catalysts[J]. Chinese Journal of Catalysis, 2021, 42(12): 2287-2295.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63771-8
Fig. 6. Catalytic activity of methane and propane combustion over the Pt/ZrO2, Pt-Mo/ZrO2, and Pt-Nb/ZrO2 catalysts and the Mo/ZrO2 and Nb/ZrO2 supports (C1 = methane, C3 = propane).
Catalyst | Pt content (wt.%) | Pt dispersion a (%) | CO uptake a (μmol gpt-1) | Specific reaction rate b (μmol gPt-1 s-1) | TOF (×10-3 s-1) c | |||||
---|---|---|---|---|---|---|---|---|---|---|
methane | propane | methane | propane | |||||||
Pt/ZrO2 | 2.1 | 30.0 | 30.7 | 45.9 | 15.9 | 29.4 | 10.2 | |||
Pt-Mo/ZrO2 | 2.0 | 22.5 | 23.0 | 21.6 | 44.2 | 18.1 | 37.1 | |||
Pt-Nb/ZrO2 | 2.0 | 31.4 | 32.2 | 96.6 | 19.0 | 57.4 | 11.3 |
Table 1 CO chemisorption, specific reaction rates, and turnover frequencies (TOFs) of Pt/ZrO2, Pt-Mo/ZrO2, and Pt-Nb/ZrO2 catalysts.
Catalyst | Pt content (wt.%) | Pt dispersion a (%) | CO uptake a (μmol gpt-1) | Specific reaction rate b (μmol gPt-1 s-1) | TOF (×10-3 s-1) c | |||||
---|---|---|---|---|---|---|---|---|---|---|
methane | propane | methane | propane | |||||||
Pt/ZrO2 | 2.1 | 30.0 | 30.7 | 45.9 | 15.9 | 29.4 | 10.2 | |||
Pt-Mo/ZrO2 | 2.0 | 22.5 | 23.0 | 21.6 | 44.2 | 18.1 | 37.1 | |||
Pt-Nb/ZrO2 | 2.0 | 31.4 | 32.2 | 96.6 | 19.0 | 57.4 | 11.3 |
Fig. 7. Stability tests of Pt/ZrO2, Pt-Mo/ZrO2, and Pt-Nb/ZrO2 catalysts at different temperatures for propane (0.2% C3H8 + 2% O2 + 97.8% N2, S.V. = 20000 h-1).
Catalyst | Fresh catalyst (%) | After methane combustion a (%) | After propane combustion b (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Pt0 | Pt2+ | Pt4+ | Pt0 | Pt2+ | Pt4+ | Pt0 | Pt2+ | Pt4+ | |
Pt/ZrO2 | 0 | 62.0 | 38.0 | 20.5 | 56.7 | 22.8 | 11.9 | 56.0 | 32.1 |
Pt-Mo/ZrO2 | 6.2 | 56.6 | 37.2 | 23.6 | 54.3 | 22.1 | 28.9 | 51.8 | 19.3 |
Pt-Nb/ZrO2 | 4.2 | 53.7 | 42.1 | 13.4 | 61.3 | 25.3 | 20.1 | 54.8 | 25.1 |
Table 2 Analysis of Pt species content on fresh and spent catalyst surfaces.
Catalyst | Fresh catalyst (%) | After methane combustion a (%) | After propane combustion b (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Pt0 | Pt2+ | Pt4+ | Pt0 | Pt2+ | Pt4+ | Pt0 | Pt2+ | Pt4+ | |
Pt/ZrO2 | 0 | 62.0 | 38.0 | 20.5 | 56.7 | 22.8 | 11.9 | 56.0 | 32.1 |
Pt-Mo/ZrO2 | 6.2 | 56.6 | 37.2 | 23.6 | 54.3 | 22.1 | 28.9 | 51.8 | 19.3 |
Pt-Nb/ZrO2 | 4.2 | 53.7 | 42.1 | 13.4 | 61.3 | 25.3 | 20.1 | 54.8 | 25.1 |
Fig. 9. Relationship between ethane (a) and n-hexane (b) conversion rates and reaction temperatures for Pt/ZrO2, Pt-Mo/ZrO2, and Pt-Nb/ZrO2 catalysts.
|
[1] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
[2] | Hao Zhang, Yaqiong Su, Nikolay Kosinov, Emiel J. M. Hensen. Non-oxidative coupling of methane over Mo-doped CeO2 catalysts: Understanding surface and gas-phase processes [J]. Chinese Journal of Catalysis, 2023, 49(6): 68-80. |
[3] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[4] | Cheng-Feng Du, Erhai Hu, Hong Yu, Qingyu Yan. Strategies for local electronic structure engineering of two-dimensional electrocatalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 1-14. |
[5] | Ping Zhang, Hao Chen, Lin Chen, Ying Xiong, Ziqi Sun, Haoyu Yang, Yingke Fu, Yaping Zhang, Ting Liao, Fei Li. Atomically dispersed Ni-N-C catalyst derived from NiZn layered double hydroxides for efficient electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 45(2): 152-161. |
[6] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[7] | Shenyu Shen, Qingfeng Guo, Tiantian Wu, Yaqiong Su. The dynamic behaviors of heterogeneous interfaces in electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 53(10): 52-71. |
[8] | Yang Ou, Songda Li, Fei Wang, Xinyi Duan, Wentao Yuan, Hangsheng Yang, Ze Zhang, Yong Wang. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments [J]. Chinese Journal of Catalysis, 2022, 43(8): 2026-2033. |
[9] | Xianwen Zhang, Zheng Li, Taifeng Liu, Mingrun Li, Chaobin Zeng, Hiroaki Matsumoto, Hongxian Han. Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting [J]. Chinese Journal of Catalysis, 2022, 43(8): 2223-2230. |
[10] | Cong Liu, Xuanhao Mei, Ce Han, Xue Gong, Ping Song, Weilin Xu. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1618-1633. |
[11] | Xiaohui Yu, Haiwei Su, Jianping Zou, Qinqin Liu, Lele Wang, Hua Tang. Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance [J]. Chinese Journal of Catalysis, 2022, 43(2): 421-432. |
[12] | Guangdong Liu, Huiqiu Deng, Jeffrey Greeley, Zhenhua Zeng. Density functional theory study of active sites and reaction mechanism of ORR on Pt surfaces under anhydrous conditions [J]. Chinese Journal of Catalysis, 2022, 43(12): 3126-3133. |
[13] | Rongchen Shen, Lei Hao, Yun Hau Ng, Peng Zhang, Arramel Arramel, Youji Li, Xin Li. Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(10): 2453-2483. |
[14] | Fang Li, Xiaoyang Yue, Haiping Zhou, Jiajie Fan, Quanjun Xiang. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2021, 42(9): 1608-1616. |
[15] | Zhifeng Dai, Yongquan Tang, Fei Zhang, Yubing Xiong, Sai Wang, Qi Sun, Liang Wang, Xiangju Meng, Leihong Zhao, Feng-Shou Xiao. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(4): 618-626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||