Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (10): 1712-1723.DOI: 10.1016/S1872-2067(20)63787-1
• Articles • Previous Articles Next Articles
Bingyu Lin(), Yuyuan Wu, Biyun Fang, Chunyan Li, Jun Ni, Xiuyun Wang, Jianxin Lin, Lilong Jiang(
)
Received:
2020-11-19
Accepted:
2021-02-18
Online:
2021-10-18
Published:
2021-02-22
Contact:
Bingyu Lin,Lilong Jiang
Supported by:
Bingyu Lin, Yuyuan Wu, Biyun Fang, Chunyan Li, Jun Ni, Xiuyun Wang, Jianxin Lin, Lilong Jiang. Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts[J]. Chinese Journal of Catalysis, 2021, 42(10): 1712-1723.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63787-1
Fig. 1. Initial NH3 synthesis rate (a) and reaction order (b) as a function of Ru surface density for the Ru/CeO2 catalysts. Reaction conditions: 400 °C, 1 MPa.
Fig. 3. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images of the fresh 0.15Ru/CeO2 (a) and 0.68Ru/CeO2 (b) catalysts. HRTEM images of the fresh 0.31Ru/CeO2 (c) and 3.4Ru/CeO2 (d) catalysts.
Fig. 5. Raman spectra of CeO2 and Ru/CeO2 catalysts with different Ru surface densities at a laser excitation wavelength of 532 nm; here, 2TA, F2g, D, and 2LO denote the second-order transverse acoustic, fluorite, defect-induced, and second-order longitudinal optical modes of CeO2.
Fig. 6. (a) In situ Ru 3d XPS profiles of Ru/CeO2 catalysts with different Ru surface densities; (b) Intensity ratio of Oβ/Oα dependence on the Ru surface density; (c) XPS IRu 3d/ICe 3d ratio dependence on Ru surface density of Ru/CeO2 catalysts. Here, Oα and Oβ denote lattice O and O vacancies, respectively.
Fig. 7. Time-resolved D/H exchange reaction at 50 °C and TPSR; signals at m/z = 3 (HD), m/z = 4 (D2), m/z = 16 (NH2 or ND), m/z = 18 (H2O or DO), m/z = 19 (HDO) and m/z = 20 (D2O).
Fig. 9. In situ DRIFTS profiles of CeO2 (a), 0.15Ru/CeO2 (b), and Ru/CeO2 (c) catalysts with different Ru surface densities after exposure to H2 at 200 °C for 10 min.
|
[1] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
[2] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[3] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[4] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[5] | Xianbiao Fu. Some thoughts about the electrochemical nitrate reduction reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 8-12. |
[6] | Yijing Gao, Shijie Zhang, Xiang Sun, Wei Zhao, Han Zhuo, Guilin Zhuang, Shibin Wang, Zihao Yao, Shengwei Deng, Xing Zhong, Zhongzhe Wei, Jian-guo Wang. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2022, 43(7): 1860-1869. |
[7] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(3): 636-678. |
[8] | Qi Hao, Yongmeng Wu, Cuibo Liu, Yanmei Shi, Bin Zhang. Unveiling subsurface hydrogen inhibition for promoting electrochemical transfer semihydrogenation of alkynes with water [J]. Chinese Journal of Catalysis, 2022, 43(12): 3095-3100. |
[9] | GUO Jianping, YAN Junmin, ZHANG Lizhi, CHEN Ping. Ammonia Synthesis under Mild Conditions [J]. Chinese Journal of Catalysis, 2019, 40(s1): 57-63. |
[10] | Yijing Gao, Han Zhuo, Yongyong Cao, Xiang Sun, Guilin Zhuang, Shengwei Deng, Xing Zhong, Zhongzhe Wei, Jianguo Wang. A theoretical study of electrocatalytic ammonia synthesis on single metal atom/Mxene [J]. Chinese Journal of Catalysis, 2019, 40(2): 152-159. |
[11] | Yaping Zhou, Yongcheng Ma, Guojun Lan, Haodong Tang, Wenfeng Han, Huazhang Liu, Ying Li. A highly stable and active mesoporous ruthenium catalyst for ammonia synthesis prepared by a RuCl3/SiO2-templated approach [J]. Chinese Journal of Catalysis, 2019, 40(1): 114-123. |
[12] | Rengui Li. Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis [J]. Chinese Journal of Catalysis, 2018, 39(7): 1180-1188. |
[13] | Di Zhang, Jingjie Luo, Jiajie Wang, Xin Xiao, Yuefeng Liu, Wei Qi, Dang Sheng Su, Wei Chu. Ru/FeOx catalyst performance design: Highly dispersed Ru species for selective carbon dioxide hydrogenation [J]. Chinese Journal of Catalysis, 2018, 39(1): 157-166. |
[14] | Huazhang Liu. Ammonia synthesis catalyst 100 years:Practice, enlightenment and challenge [J]. Chinese Journal of Catalysis, 2014, 35(10): 1619-1640. |
[15] | ZHOU Yaping, LAN Guojun, ZHOU Bin, JIANG Wei, HAN Wenfeng, LIU Huazhang, LI Ying. Effect of pore structure of mesoporous carbon on its supported Ru catalysts for ammonia synthesis [J]. Chinese Journal of Catalysis, 2013, 34(7): 1395-1401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||