Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (11): 1999-2009.DOI: 10.1016/S1872-2067(21)63829-9
• Articles • Previous Articles Next Articles
Jiayue Rong, Zhenzhen Wang, Jiaqi Lv, Ming Fan, Ruifeng Chong*(), Zhixian Chang#(
)
Received:
2021-02-07
Revised:
2021-02-07
Accepted:
2021-04-08
Online:
2021-11-18
Published:
2021-04-30
Contact:
Ruifeng Chong,Zhixian Chang
About author:
#E-mail: chzx19@henu.edu.cnSupported by:
Jiayue Rong, Zhenzhen Wang, Jiaqi Lv, Ming Fan, Ruifeng Chong, Zhixian Chang. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting[J]. Chinese Journal of Catalysis, 2021, 42(11): 1999-2009.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63829-9
Fig. 1. (a) Illustration of fabrication of Ni(OH)2 QDs/α-Fe2O3; TEM images of Ni(OH)2 QDs/α-Fe2O3 under different successive dipping frequencies: (b) 1, (c) 3, and (d) 5 times; (e) HRTEM image of Ni(OH)2 QDs/α-Fe2O3; photographs of Ni(OH)2 QDs with a Tyndall effect (f) and fresh NO3--Ni(OH)2 precipitate (g).
Fig. 3. High-resolution XPS spectra of (a) Ni 2p in EDTA-Ni(OH)2 and NO3--Ni(OH)2 (a), Fe 2p (b) and O 1s (c) in α-Fe2O3 and Ni(OH)2 QDs/α-Fe2O3; (d) UV-vis absorption of α-Fe2O3, NO3--Ni(OH)2/α-Fe2O3 and Ni(OH)2 QDs/α-Fe2O3.
Fig. 4. (a) LSV curves for α-Fe2O3 and Ni(OH)2 QDs/α-Fe2O3 with 1, 3, and 5 dipping times; (b) amperometric I-t curves for α-Fe2O3 and Ni(OH)2 QDs/α-Fe2O3; (c) LSV curves and (d) I-t curves under chopped light illumination for α-Fe2O3, Ni(OH)2 QDs/α-Fe2O3, and NO3--Ni(OH)2/α-Fe2O3.
Fig. 5. CVs ofα-Fe2O3 (a) and Ni(OH)2 QDs/α-Fe2O3 (b) in the non-Faradaic potential range from 0.85 to 1.05 V vs. RHE at scan rates of 20, 40, 60, 80, and 100 mV·s-1; (c) half capacitive current differences (Δj/2) vs. scan rates; (d) OCP profiles of α-Fe2O3 and Ni(OH)2 QDs/α-Fe2O3.
Fig. 8. (a) IMPS curves for α-Fe2O3 and Ni(OH)2 QDs/α-Fe2O3 photoanodes under the applied potential of 1.2 V vs. RHE; (b) Charge transfer rate constant (ktr) and recombination rate constant (krec) for α-Fe2O3 and Ni(OH)2 QDs/α-Fe2O3.
|
[1] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[2] | Ruiyu Zhong, Yujie Liang, Fei Huang, Shinuo Liang, Shengwei Liu. Regulating interfacial coupling of 1D crystalline g-C3N4 nanorods with 2D Ti3C2Tx MXene for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 53(10): 109-122. |
[3] | Xianwen Zhang, Zheng Li, Taifeng Liu, Mingrun Li, Chaobin Zeng, Hiroaki Matsumoto, Hongxian Han. Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting [J]. Chinese Journal of Catalysis, 2022, 43(8): 2223-2230. |
[4] | Meiyu Zhang, Chaochao Qin, Wanjun Sun, Congzhao Dong, Jun Zhong, Kaifeng Wu, Yong Ding. Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1818-1829. |
[5] | Hui Zhao, Qinyi Mao, Liang Jian, Yuming Dong, Yongfa Zhu. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms [J]. Chinese Journal of Catalysis, 2022, 43(7): 1774-1804. |
[6] | Yaping Zhang, Jixiang Xu, Jie Zhou, Lei Wang. Metal-organic framework-derived multifunctional photocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 971-1000. |
[7] | Zhiming Zhou, Jinjin Chen, Qinlong Wang, Xingxing Jiang, Yan Shen. Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode [J]. Chinese Journal of Catalysis, 2022, 43(2): 433-441. |
[8] | Li Wang, Yukun Li, Chao Wu, Xin Li, Guosheng Shao, Peng Zhang. Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production [J]. Chinese Journal of Catalysis, 2022, 43(2): 507-518. |
[9] | Chen Guan, Xiaoyang Yue, Jiajie Fan, Quanjun Xiang. MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications [J]. Chinese Journal of Catalysis, 2022, 43(10): 2484-2499. |
[10] | Xueyou Gao, Deqian Zeng, Jingren Yang, Wee-Jun Ong, Toyohisa Fujita, Xianglong He, Jieqian Liu, Yuezhou Wei. Ultrathin Ni(OH)2 nanosheets decorated with Zn0.5Cd0.5S nanoparticles as 2D/0D heterojunctions for highly enhanced visible light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2021, 42(7): 1137-1146. |
[11] | Shipeng Tang, Yang Xia, Jiajie Fan, Bei Cheng, Jiaguo Yu, Wingkei Ho. Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts [J]. Chinese Journal of Catalysis, 2021, 42(5): 743-752. |
[12] | Qian Ding, Tao Chen, Zheng Li, Zhaochi Feng, Xiuli Wang. Time-resolved infrared spectroscopic investigation of Ga2O3 photocatalysts loaded with Cr2O3-Rh cocatalysts for photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2021, 42(5): 808-816. |
[13] | Naixu Li, Meiyou Huang, Jiancheng Zhou, Maochang Liu, Dengwei Jing. MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O [J]. Chinese Journal of Catalysis, 2021, 42(5): 781-794. |
[14] | Yang Li, Ningsi Zhang, Changhao Liu, Yuanming Zhang, Xiaoming Xu, Wenjing Wang, Jianyong Feng, Zhaosheng Li, Zhigang Zou. Metastable-phase β-Fe2O3 photoanodes for solar water splitting with durability exceeding 100 h [J]. Chinese Journal of Catalysis, 2021, 42(11): 1992-1998. |
[15] | Rongchen Shen, Yingna Ding, Shibang Li, Peng Zhang, Quanjun Xiang, Yun Hau Ng, Xin Li. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2021, 42(1): 25-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||