Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (2): 339-349.DOI: 10.1016/S1872-2067(21)63875-5
• Article • Previous Articles Next Articles
Jinmao Lia,b, Congcong Wua, Jin Lia,$(), Binghai Donga, Li Zhaoa,*(
), Shimin Wanga,#(
)
Received:
2021-05-02
Accepted:
2021-06-10
Online:
2022-02-18
Published:
2021-07-02
Contact:
Jin Li, Li Zhao, Shimin Wang
Supported by:
Jinmao Li, Congcong Wu, Jin Li, Binghai Dong, Li Zhao, Shimin Wang. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2022, 43(2): 339-349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63875-5
Fig. 1. (a) Schematic of the synthesis of TZISx composites; (b) Zeta potential of TiO2 in ethanol aqueous solution (volume ratio of water to ethanol is 2:1).
Fig. 2. (a) XRD data, (b) nitrogen adsorption-desorption isotherms, (c) pore-size distributions, and (d) UV-vis diffuse reflectance spectra of TiO2, ZnIn2S4, and TZISx composites.
Fig. 3. (a) XPS survey data of TiO2, ZnIn2S4, and TZIS2; Ti 2p (b) andO 1s (c) high-resolution XPS data of TiO2 and TZIS2 in dark or under light irradiation; Zn 2p (d), In 3d (e), and S 2p (f) XPS data of ZnIn2S4 and TZIS2 in dark and under light irradiation.
Sample | SBET (m2/g) | Pore size (nm) | Pore volume (cm3/g) |
---|---|---|---|
TiO2 | 23.6 | 15.5 | 0.09 |
TZIS1 | 26.6 | 14.5 | 0.10 |
TZIS2 | 58.3 | 11.9 | 0.17 |
TZIS3 | 81.5 | 10.9 | 0.22 |
ZnIn2S4 | 146.3 | 9.1 | 0.33 |
Table 1 Physical properties of the as-prepared photocatalysts.
Sample | SBET (m2/g) | Pore size (nm) | Pore volume (cm3/g) |
---|---|---|---|
TiO2 | 23.6 | 15.5 | 0.09 |
TZIS1 | 26.6 | 14.5 | 0.10 |
TZIS2 | 58.3 | 11.9 | 0.17 |
TZIS3 | 81.5 | 10.9 | 0.22 |
ZnIn2S4 | 146.3 | 9.1 | 0.33 |
Fig. 4. FESEM images of TiO2 (a), ZnIn2S4 (b), and TZIS2 (c); TEM (d) and HRTEM (e) images of TZIS2; (f) Energy-dispersive X-ray mapping images of TZIS2.
Fig. 5. (a) PHE activities of the as-prepared samples in TEOA solution; (b) PHE activity of TZIS2 using different sacrificial reagents; (c) AQE of TZIS2 using different sacrificial reagents; (d) Cyclic PHE experiments of TZIS2 in TEOA aqueous solution; (e) XRD data of TZIS2 before and after reaction.
Photocatalyst | Light source | Electron donor | H2 evolution rate (mmol/h/g) | Ref. |
---|---|---|---|---|
ZnIn2S4/TiO2‒x | LED lamp (420 nm) | Na2S/Na2SO3 | 0.53 | [ |
ZnIn2S4@SiO2@TiO2 | 300 W Xe lamp | TEOA | 0.62 | [ |
rGO/TiO2/ZIS | 300 W Xe lamp | Na2S/Na2SO3 | 0.46 | [ |
TiO2@ZnIn2S4 | 300 W Xe lamp | Lactic acid | 1.24 | [ |
Ti3C2@TiO2/ZIS | 300 W Xe lamp | Na2S/Na2SO3 | 1.19 | [ |
TiO2 nanobelt/ZnIn2S4 | 300 W Xe lamp | Na2S/Na2SO3 | 0.35 | [ |
TiO2 nanofiber/ZnIn2S4 | 300 W Xe lamp | TEOA Lactic acid Methanol Na2S/Na2SO3 | 6.03 2.32 1.92 1.56 | This work |
Table 2 Comparison of H2 evolution rate using representative photocatalysts.
Photocatalyst | Light source | Electron donor | H2 evolution rate (mmol/h/g) | Ref. |
---|---|---|---|---|
ZnIn2S4/TiO2‒x | LED lamp (420 nm) | Na2S/Na2SO3 | 0.53 | [ |
ZnIn2S4@SiO2@TiO2 | 300 W Xe lamp | TEOA | 0.62 | [ |
rGO/TiO2/ZIS | 300 W Xe lamp | Na2S/Na2SO3 | 0.46 | [ |
TiO2@ZnIn2S4 | 300 W Xe lamp | Lactic acid | 1.24 | [ |
Ti3C2@TiO2/ZIS | 300 W Xe lamp | Na2S/Na2SO3 | 1.19 | [ |
TiO2 nanobelt/ZnIn2S4 | 300 W Xe lamp | Na2S/Na2SO3 | 0.35 | [ |
TiO2 nanofiber/ZnIn2S4 | 300 W Xe lamp | TEOA Lactic acid Methanol Na2S/Na2SO3 | 6.03 2.32 1.92 1.56 | This work |
Fig. 6. (a) PL spectra of the as-prepared samples; (b) TRPL of TiO2 and TZIS2; Transient photocurrent (c) and EIS plots (d) of TiO2, ZnIn2S4, and TZIS2.
|
[1] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[2] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[3] | Jiaming Li, Yuan Li, Xiaotian Wang, Zhixiong Yang, Gaoke Zhang. Atomically dispersed Fe sites on TiO2 for boosting photocatalytic CO2 reduction: Enhanced catalytic activity, DFT calculations and mechanistic insight [J]. Chinese Journal of Catalysis, 2023, 51(8): 145-156. |
[4] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[5] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[6] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[7] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[8] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[9] | Chenggong Yang, Donge Wang, Rong Huang, Jianqiang Han, Na Ta, Huaijun Ma, Wei Qu, Zhendong Pan, Congxin Wang, Zhijian Tian. Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation [J]. Chinese Journal of Catalysis, 2023, 46(3): 125-136. |
[10] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[11] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[12] | Yang Lei, Jian-Feng Huang, Xin-Ao Li, Chu-Ying Lv, Chao-Ping Hou, Jun-Min Liu. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(8): 2249-2258. |
[13] | Xiu Qian, Yanjiao Wei, Mengjie Sun, Ye Han, Xiaoli Zhang, Jian Tian, Minhua Shao. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2Tx MXene to improve the electrocatalytic nitrogen reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1937-1944. |
[14] | Zhongliao Wang, Bei Cheng, Liuyang Zhang, Jiaguo Yu, Youji Li, S. Wageh, Ahmed A. Al-Ghamdi. S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1657-1666. |
[15] | Zhenlong Zhao, Ji Bian, Lina Zhao, Hongjun Wu, Shuai Xu, Lei Sun, Zhijun Li, Ziqing Zhang, Liqiang Jing. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation [J]. Chinese Journal of Catalysis, 2022, 43(5): 1331-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||