Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (1): 167-176.DOI: 10.1016/S1872-2067(21)63886-X
• Articles • Previous Articles
Wei Zhanga,b, Guang-Jie Xiaa,*(), Yang-Gang Wanga,#(
)
Received:
2021-06-30
Accepted:
2021-07-12
Online:
2022-01-18
Published:
2021-11-15
Contact:
Guang-Jie Xia,Yang-Gang Wang
About author:
# Tel: +86-15510462981; E-mail: wangyg@sustech.edu.cnSupported by:
Wei Zhang, Guang-Jie Xia, Yang-Gang Wang. Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy[J]. Chinese Journal of Catalysis, 2022, 43(1): 167-176.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63886-X
Intermediates | Pt(110) | Pt3Cu | Cu(110) | |||||
---|---|---|---|---|---|---|---|---|
ΔEb | Site | ΔEb | Site | ΔEb | Site | |||
CH3OH | -0.95 | top | -0.93 | top | -0.71 | bridge | ||
CH2OH | -3.11 | top | -3.41 | bridge | -2.08 | bridge | ||
CHOH | -4.11 | bridge | -4.24 | top | -2.37 | bridge | ||
COH | -5.50 | bridge | -4.57 | bridge | -3.30 | bridge | ||
CO | -2.50 | bridge | -2.50 | top | -1.12 | bridge | ||
HCO | -3.63 | bridge | -3.69 | bridge | -2.19 | bridge | ||
C(OH)2 | -3.50 | top | -3.64 | top | -2.00 | bridge | ||
CH3O | -2.89 | bridge | -3.02 | bridge | -3.26 | bridge | ||
CH2O | -1.53 | bridge | -1.32 | bridge | -0.68 | hcp | ||
H2COOH | -2.68 | bridge | -2.87 | bridge | -3.14 | bridge | ||
HCOOH | -1.08 | top | -1.02 | top | -0.74 | top | ||
COOH | -3.70 | bridge | -3.81 | bridge | -2.77 | bridge | ||
H2COO | -3.76 | bridge | -3.56 | hcp | -4.98 | hcp | ||
HCOO | -3.66 | bridge | -3.68 | bridge | -3.79 | bridge | ||
OH | -3.54 | bridge | -3.7 | bridge | -4.05 | bridge |
Table 1 The adsorption energies between intermediates and substrates (ΔEb) at the most favorable binding sites.
Intermediates | Pt(110) | Pt3Cu | Cu(110) | |||||
---|---|---|---|---|---|---|---|---|
ΔEb | Site | ΔEb | Site | ΔEb | Site | |||
CH3OH | -0.95 | top | -0.93 | top | -0.71 | bridge | ||
CH2OH | -3.11 | top | -3.41 | bridge | -2.08 | bridge | ||
CHOH | -4.11 | bridge | -4.24 | top | -2.37 | bridge | ||
COH | -5.50 | bridge | -4.57 | bridge | -3.30 | bridge | ||
CO | -2.50 | bridge | -2.50 | top | -1.12 | bridge | ||
HCO | -3.63 | bridge | -3.69 | bridge | -2.19 | bridge | ||
C(OH)2 | -3.50 | top | -3.64 | top | -2.00 | bridge | ||
CH3O | -2.89 | bridge | -3.02 | bridge | -3.26 | bridge | ||
CH2O | -1.53 | bridge | -1.32 | bridge | -0.68 | hcp | ||
H2COOH | -2.68 | bridge | -2.87 | bridge | -3.14 | bridge | ||
HCOOH | -1.08 | top | -1.02 | top | -0.74 | top | ||
COOH | -3.70 | bridge | -3.81 | bridge | -2.77 | bridge | ||
H2COO | -3.76 | bridge | -3.56 | hcp | -4.98 | hcp | ||
HCOO | -3.66 | bridge | -3.68 | bridge | -3.79 | bridge | ||
OH | -3.54 | bridge | -3.7 | bridge | -4.05 | bridge |
Fig. 1. The 3D configurations of the favorable adsorption of intermediates. (a) Pt(110), (b) Pt3Cu, and (c) Cu(110) surface. Blue and orange spheres represent the first- and second-layer Pt atoms; Pink and light pink spheres indicate the first- and second-layer Cu atoms; Red, grey and white spheres represent O, C and H atoms, respectively.
Elementary reaction step | Pt(110) | Pt3Cu | Cu(110) |
---|---|---|---|
(R01) CH3OH + * →CH2OH* + H+ + e- | -0.56 | -0.78 | 0.51 |
(R02) CH2OH* → CHOH* + H+ + e- | -0.10 | 0.00 | 0.53 |
(R03) CHOH* → COH* + H+ + e- | -0.01 | 1.00 | 0.43 |
(R04) COH* →CO* + H+ + e- | -0.72 | -1.68 | -1.59 |
(R05) CO* + H2O → CO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R06) CO* + OH* → COOH* + * | 0.36 | 0.47 | 0.47 |
(R07) COOH* → CO2 + * + H+ + e- | 0.49 | 0.61 | -0.39 |
(R08) CH3OH + * → CH3O* + H+ + e- | 0.05 | -0.09 | -0.33 |
(R09) CH3O* → CH2O* + H+ + e- | -0.43 | -0.13 | 0.75 |
(R10) CH2OH* → CH2O* + H+ + e- | 0.18 | 0.56 | -0.09 |
(R11) CH2O* + H2O + * → CH2O* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R12) CH2O* → HCO* + H+ + e- | -0.36 | -0.61 | 0.20 |
(R13) CHOH* → HCO* + H+ + e- | -0.09 | -0.04 | -0.41 |
(R14) HCO* → CO*+H++e- | -0.65 | -0.64 | -0.74 |
(R15) CH2O* + OH* → H2COOH* + * | 0.59 | 0.40 | -0.18 |
(R16) H2COOH* → H2COO* + H+ + e- | 0.37 | 0.75 | -0.36 |
(R17) H2COOH* → HCOOH* + H+ +e- | -0.87 | -0.65 | -0.08 |
(R18) HCOOH* → COOH* + H+ + e- | -0.37 | -0.53 | 0.19 |
(R19) HCOOH* →HCOO*+H++ e- | -0.21 | -0.28 | -0.68 |
(R20) H2COO* →HCOO*+H++e- | -1.45 | -1.67 | -0.41 |
(R21) HCOO* →CO2 + * + H+ + e- | 0.33 | 0.35 | 0.49 |
(R22) COH* + H2O + * → COH* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R23) COH* + OH* → C(OH)2*+ * | -0.53 | -1.42 | -0.70 |
(R24) C(OH)2* → COOH* + H+ + e- | 0.17 | 0.20 | -0.42 |
(R25) HCO* + OH* → HCOOH* + * | 0.08 | 0.36 | -0.46 |
(R26) HCO* + H2O + * → HCO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R27) H2COH* + OH* → H2COH*+ O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R28) H2COH* + O* → H2COOH* + * | 0.21 | 0.03 | -1.51 |
(R29) HCOH* + OH* → HCOH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R30) HCOH* + O* → HCOOH*+ * | -0.56 | -0.61 | -2.12 |
(R31) COH* + OH* → COH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R32) COH* + O* → COOH*+ * | -0.91 | -2.14 | -2.35 |
(R33) CO* + OH* → CO* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R34) CO* + O* → CO2 + * | 0.30 | 0.15 | -1.15 |
(R35) HCO* + OH* → HCO* + O*+ H+ + e- | 0.55 | 0.93 | 1.24 |
(R36) HCO* + O* →HCOO* + * | -0.68 | -0.84 | -2.39 |
(R37) H2CO* + OH* → H2CO* + O*+H+ + e- | 0.55 | 0.93 | 1.24 |
(R38) H2CO* + O* → H2COO* + * | 0.41 | 0.22 | -1.78 |
(R39) H2O+ *→ OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R40) OH* → H+ + O* + e- | 0.55 | 0.93 | 1.24 |
(R41) H* → H+ + * + e- | 0.43 | 0.52 | -0.03 |
Table 2 The calculated reaction free energy change (ΔG) in methanol electro-oxidation on Pt(110), Pt3Cu and Cu(110) surface. The corresponding energy change (ΔE), ZPE change (ΔZPE) and entropy changes (ΔS) are detailly shown in Table S3.
Elementary reaction step | Pt(110) | Pt3Cu | Cu(110) |
---|---|---|---|
(R01) CH3OH + * →CH2OH* + H+ + e- | -0.56 | -0.78 | 0.51 |
(R02) CH2OH* → CHOH* + H+ + e- | -0.10 | 0.00 | 0.53 |
(R03) CHOH* → COH* + H+ + e- | -0.01 | 1.00 | 0.43 |
(R04) COH* →CO* + H+ + e- | -0.72 | -1.68 | -1.59 |
(R05) CO* + H2O → CO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R06) CO* + OH* → COOH* + * | 0.36 | 0.47 | 0.47 |
(R07) COOH* → CO2 + * + H+ + e- | 0.49 | 0.61 | -0.39 |
(R08) CH3OH + * → CH3O* + H+ + e- | 0.05 | -0.09 | -0.33 |
(R09) CH3O* → CH2O* + H+ + e- | -0.43 | -0.13 | 0.75 |
(R10) CH2OH* → CH2O* + H+ + e- | 0.18 | 0.56 | -0.09 |
(R11) CH2O* + H2O + * → CH2O* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R12) CH2O* → HCO* + H+ + e- | -0.36 | -0.61 | 0.20 |
(R13) CHOH* → HCO* + H+ + e- | -0.09 | -0.04 | -0.41 |
(R14) HCO* → CO*+H++e- | -0.65 | -0.64 | -0.74 |
(R15) CH2O* + OH* → H2COOH* + * | 0.59 | 0.40 | -0.18 |
(R16) H2COOH* → H2COO* + H+ + e- | 0.37 | 0.75 | -0.36 |
(R17) H2COOH* → HCOOH* + H+ +e- | -0.87 | -0.65 | -0.08 |
(R18) HCOOH* → COOH* + H+ + e- | -0.37 | -0.53 | 0.19 |
(R19) HCOOH* →HCOO*+H++ e- | -0.21 | -0.28 | -0.68 |
(R20) H2COO* →HCOO*+H++e- | -1.45 | -1.67 | -0.41 |
(R21) HCOO* →CO2 + * + H+ + e- | 0.33 | 0.35 | 0.49 |
(R22) COH* + H2O + * → COH* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R23) COH* + OH* → C(OH)2*+ * | -0.53 | -1.42 | -0.70 |
(R24) C(OH)2* → COOH* + H+ + e- | 0.17 | 0.20 | -0.42 |
(R25) HCO* + OH* → HCOOH* + * | 0.08 | 0.36 | -0.46 |
(R26) HCO* + H2O + * → HCO* + OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R27) H2COH* + OH* → H2COH*+ O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R28) H2COH* + O* → H2COOH* + * | 0.21 | 0.03 | -1.51 |
(R29) HCOH* + OH* → HCOH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R30) HCOH* + O* → HCOOH*+ * | -0.56 | -0.61 | -2.12 |
(R31) COH* + OH* → COH* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R32) COH* + O* → COOH*+ * | -0.91 | -2.14 | -2.35 |
(R33) CO* + OH* → CO* + O* + H+ + e- | 0.55 | 0.93 | 1.24 |
(R34) CO* + O* → CO2 + * | 0.30 | 0.15 | -1.15 |
(R35) HCO* + OH* → HCO* + O*+ H+ + e- | 0.55 | 0.93 | 1.24 |
(R36) HCO* + O* →HCOO* + * | -0.68 | -0.84 | -2.39 |
(R37) H2CO* + OH* → H2CO* + O*+H+ + e- | 0.55 | 0.93 | 1.24 |
(R38) H2CO* + O* → H2COO* + * | 0.41 | 0.22 | -1.78 |
(R39) H2O+ *→ OH* + H+ + e- | 0.43 | 0.28 | -0.07 |
(R40) OH* → H+ + O* + e- | 0.55 | 0.93 | 1.24 |
(R41) H* → H+ + * + e- | 0.43 | 0.52 | -0.03 |
Fig. 3. The free energy diagram of water dissociation with electrochemical step (red dash lines) and thermodynamic step (blue lines). (a) Pt(110); (b) Pt3Cu; (c) Cu(110); (d) The corresponding 3D configurations of transition states.
Fig. 4. The dehydrogenation steps of the methanol reactant to the adsorbed CO. (a) The flow diagram for the dehydrogenation of methanol to CO. The blue arrows show the favorable reaction pathway on Pt(111) and Pt3Cu. The corresponding free energy changes on (b) Pt(110), (c) Pt3Cu and (d) Cu(110).
Fig. 5. The free energy barriers of the anti-poison processes by the OH*. Its reactions with CO* and those possible intermediates before dehydrogenations, i.e. H2CO*, HCO* and COH*, are investigated. (a) Pt(110) surface; (b) Pt3Cu surface; (c) Cu(110) surface; (d) the corresponding 3D configurations of transition states. The detail free energy barrier values are shown in Table S4.
Fig. 6. The dehydrogenation steps after the anti-poison steps to form the CO2 product. (a) The flow diagram for the dehydrogenation steps to form CO2. The blue arrows show the favorable reaction pathway on Pt(111) and Pt3Cu. The corresponding free energy changes on Pt(110) (b), Pt3Cu (c) and Cu(110) (d).
Fig. 7. The free energy diagram of the favorable reaction pathway in MOR with considering both electrochemical steps and thermodynamic steps. The blue dash lines represent the thermodynamic water dissociation step, while the red lines represent the anti-poison reaction by OH*. (a) Pt(110); (b) Pt3Cu; (c) Cu(110). The detail relative free energies are shown in Table S6. The less favorable reaction pathway involving the anti-poison by O* is shown in Fig. S3 and Table S7.
|
[1] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[2] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[3] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[4] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[5] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[6] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[7] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[8] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[9] | Chengcheng Chen, Fangting Liu, Qiaoyu Zhang, Zhengguo Zhang, Qiong Liu, Xiaoming Fang. Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 46(3): 91-102. |
[10] | Yao Wu, Jiefu Yang, Mei Zheng, Dianyi Hu, Teddy Salim, Bijun Tang, Zheng Liu, Shuzhou Li. Two-dimensional cobalt ferrite through direct chemical vapor deposition for efficient oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 55(12): 265-277. |
[11] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[12] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
[13] | Nan Li, Chuanyi Wang, Ke Zhang, Haiqin Lv, Mingzhe Yuan, Detlef W. Bahnemann. Progress and prospects of photocatalytic conversion of low-concentration NOx [J]. Chinese Journal of Catalysis, 2022, 43(9): 2363-2387. |
[14] | Yijing Gao, Shijie Zhang, Xiang Sun, Wei Zhao, Han Zhuo, Guilin Zhuang, Shibin Wang, Zihao Yao, Shengwei Deng, Xing Zhong, Zhongzhe Wei, Jian-guo Wang. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2022, 43(7): 1860-1869. |
[15] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||