Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (9): 2363-2387.DOI: 10.1016/S1872-2067(22)64139-1
• Review • Previous Articles Next Articles
Nan Lia,b, Chuanyi Wanga,b,*(), Ke Zhanga, Haiqin Lvb, Mingzhe Yuanb,#(
), Detlef W. Bahnemanna,c,d,$(
)
Received:
2022-04-11
Accepted:
2022-05-30
Online:
2022-09-18
Published:
2022-07-20
Contact:
Chuanyi Wang, Mingzhe Yuan, Detlef W. Bahnemann
About author:
Prof. Chuanyi Wang is a distinguished professor at Shaanxi University of Science & Technology (SUST), China. Before moving to SUST in 2017, he was a distinguished professor of Chinese Academy of Sciences (CAS), serving as Director of Laboratory of Environmental Science & Technology of Xinjiang Technical Institute of Physics & Chemistry, CAS (2010‒2017). He obtained his Ph.D. degree from Institute of Photographic Chemistry of CAS in 1998, worked in Germany as an Alexander von Humboldt research fellow with Prof. Detlef W. Bahnemann from 1999 to 2000, and then worked in USA (Tufts University and Missouri University-Kansas City) as a research faculty from 2000 to 2010. Currently, Dr. Wang also serves as an associate editor or editorial board member for several international journals. His research interest covers eco-materials and environmental photocatalysis. By far, he has published over 180 papers in peer reviewed journals.Supported by:
Nan Li, Chuanyi Wang, Ke Zhang, Haiqin Lv, Mingzhe Yuan, Detlef W. Bahnemann. Progress and prospects of photocatalytic conversion of low-concentration NOx[J]. Chinese Journal of Catalysis, 2022, 43(9): 2363-2387.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64139-1
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LaFeO3/SrTiO3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.93 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb (30 ± 5%) | 40% | [ | |||||||||
SrTiO3/SrCO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | ppb | 47% | [ | |||||||||
Na0.5Bi0.5TiO3 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) | 400 ppb (70%) | 200 ppb min-1 | [ | |||||||||
Pb2Bi4Ti5O18 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 1 L min-1 | 500 ppb | 50.3% | [ | |||||||||
Pd/PdO/β-Bi2O3 (0.05 g) | Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 47.6% | [ | |||||||||
SrBi2Ta2O9 (0.05 g) | 300 W Xenon lamp | 0.35 L (1.7 L min-1) | 600 ppb (50%) | 51% | [ | |||||||||
BiOI/ZnWO4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (35 mW cm-2) | 4.5 L | 430 ppb (30±5%) | 32.32% | [ | |||||||||
Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 59% | [ | |||||||||
S-scheme Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 77.7% | [ | |||||||||
BP/monolayer Bi2WO6 (0.08 g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 67 % | [ | |||||||||
Bi0@Bi2WO6‒x | visible light irradiation, λ ≥ 420 nm | — | — | 53.4% | [ | |||||||||
Bi2WO6-Ovs (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 550 ppb | 55% | [ | |||||||||
Bi@OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 40.8% | [ | |||||||||
OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb | 32% | [ | |||||||||
Bi/(BiO)2CO3 (0.2 g) | 100 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 58% | [ | |||||||||
Ag clusters-grafted (BiO)2CO3 (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (3.3 L min-1) | 550 ppb (60%) | 52.8% | [ | |||||||||
(BiO)2CO3-BiO2-x-graphene (0.1 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 54% | [ | |||||||||
Bi2O2CO3/Bi4O5Br2 (0.108 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 53.2% | [ | |||||||||
(BiO)2CO3/MoS2 (0.2 g) | 150 W tungsten halogen lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 57% | [ | |||||||||
Bi2O2CO3-MoS2-carbon nanofibers (0.15 g) | Xenon lamp, λ ≥ 420 nm | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 68% | [ | |||||||||
Bi2O2CO3-g-C3N4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (3 L min-1) | 400 ppb (70%) | 35% | [ | |||||||||
(BiO)2CO3/graphene (0.1 g) | 100 W tungsten halogen lamp | 4.5 L (2.4 L min-1) | 600 ppb (70%) | 63.5% | [ | |||||||||
Bi-BiPO4 (0.1 g) | 300 W Xenon lamp | 0.40 L (1.2 L min-1) | 400 ppb | 32.8% | [ | |||||||||
Bi @Bi2O2SiO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 450 ppb | 50.2% | [ | |||||||||
Bi4MoO9/Bi (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 550 ppb (50%) | 57.2% | [ | |||||||||
OV Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L | 500 ppb | 54% | [ | |||||||||
Bi/Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 68.1% | [ | |||||||||
P123-Bi@Bi2O3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.50 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb | 41% | [ | |||||||||
Bi@BiOCl (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 67.5% | [ | |||||||||
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
Bi/ BiOCl/C (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | ppb level | 53.0% | [ | |||||||||
BiOCl/Bi12O17Cl2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min‒1) | 500 ppb (50%) | 37.2% | [ | |||||||||
Bi/GO (0.2 g) | 8 W UV lamp, λ = 280 nm | 4.5 L (2.4 L min-1 and 15 mL min‒1) | 660 ppb (50%) | 50.2% | [ | |||||||||
Bi-NPs@GO (0.2 g) | 15 W UV lamp, 280-320 nm | 4.5 L (2.4 L min-1) (A sampling rate = 1.0 L min‒1) | 500 ppb (50%) | 42.3% | [ | |||||||||
Ag/AgCl@BiOCl/Bi12O17Cl2 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 49.5% | [ | |||||||||
CaSO4-BiOI (0.2g) | visible light region (420-780 nm) | — | — | 54.4% | [ | |||||||||
BiOI (0.15 g) | LED lamp, λ = 448 nm | 4.5 L (1 L min-1) | 600 ppb | 65% | [ | |||||||||
Bi@BiOI (0.1g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 40.8% | [ | |||||||||
I-doped BiOIO3/g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
Sb2WO6/g-C3N4 (0.05g) | Xenon lamp | 8.4 L | 400 ppb | 68% | [ | |||||||||
Bi4O5Br2/GO (0.15g) | 500 W Xeon lamp, 420-780nm (174 mW·cm‒2) | 2.0 L (1.8 L min-1) | 560 ppb (50%) | 51.7% | [ | |||||||||
BiOBr/C3N4 (0.1g) | 100 W tungsten halogen lamp, λ > 420 nm | 4.5 L (2.4 L min-1) | 660 ppb (40-80%) | 32.7% | [ | |||||||||
BiOBr-graphene (0.1g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
WO3/Bi4O5Br2 (0.2 g) | 500 W Xenon lamp (λ = 420-780 nm) | 2.0 L (1.8 L min-1) (a sampling rate = 1.2 L min-1) | 500 ppb (50%) | 50% | [ | |||||||||
Bi0/CeO2-δ (0.1g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 43.7% | [ | |||||||||
Br-BiOCOOH (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 37.8% | [ | |||||||||
Bi2Sn2O7 (0.2g) | 300 W Xenon arc lamp | 4.5 L (3 L min-1) | 400 ppb (30±5%) | 37% | [ | |||||||||
Bi/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 500 ppb (50%) | 54.8% | [ | |||||||||
Bi-CN (0.2g) | LED lamp, λ = 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 70.4% | [ | |||||||||
g-C3N4-Co3O4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
PICN(S)GA-75 aerogel (0.08g) | 300 W Xenon lamp (simulated solar light) | 2.26 L (2.0 L min-1) | 600 ppb | 66% | [ | |||||||||
Ag/g-C3N4 (0.2g) | 300 W tungsten halogen lamp, λ = 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 600 ppb (50%) | 54.3% | [ | |||||||||
g-C3N4/Ti3+ self-doped TiO2 | 300 W Xenon lamp, λ ≥ 420 nm | 0.85L (1.2 L min-1) | 400 ppb (50%) | 25.8% | [ | |||||||||
celestite/g-C3N4 (0.05g) | 30 W LED lamp | 0.785 L (1.0 L min-1) | 600 ppb | 67.5% | [ | |||||||||
g-C3N4 nanosheets (0.2g) | LED lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (1.0 L min-1) | 400-600 ppb | 65% | [ | |||||||||
g-C3N4/K,Na (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 36.8% | [ | |||||||||
Au-CMTKP-g-C3N4 | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.18 W cm-2) | 40 cm × 6 cm (3.0 L min-1) | 300 ppb | 57.3% ± 0.46% | [ | |||||||||
g-C3N4-H (0.1g) | 150 W commercial tungsten halogen lamp, λ > 420 nm | 4.5 L | 600 ppb | 41.84% | [ | |||||||||
BaWO4/g-C3N4 (0.1g) | LED lights (12 W), λ > 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 520 ppb | 42.17% | [ | |||||||||
g-C3N4 (0.05 g) | Xenon lamp, λ > 420 nm (14 W m-2) | 4.5 L (1.0 L min-1) | 600 ppb | 80% | [ | |||||||||
Sr doped g-C3N4 (0.05g) | 300 W Xenon lamp, λ > 420 nm | 0.785 L | 600 ppb | 55% | [ | |||||||||
Ca/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | 500 ppb (50%) | 54.78% | [ | |||||||||
Au nanoparticles @g-C3N4 (0.2g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb | 41% | [ | |||||||||
g-C3N4 nanosheets (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 33.9% | [ | |||||||||
g-C3N4-TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | 0.114 L (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 44% | [ | |||||||||
AgVO3-g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 65% | [ | |||||||||
PI-g-C3N4 (0.05g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L (1.0 L min-1) | 600 ppb | 47% | [ | |||||||||
CN-Ola (0.1g) | 150 W tungsten halogen lamp | 4.5 L | 500 ppb | 50.4% | [ | |||||||||
O-ACN-Ba (0.2g) | 150 W tungsten halogen lamp, 0.16 W cm-2 | 4.5 L | 500 ppb | 56.4% | [ | |||||||||
g-C3N4 nanosheets (0.2 g) | LED lamp, λ > 400 nm | 4.5 L | 600 ppb | 35.8% | [ | |||||||||
Photocatalyst (dosage) | Irradiation conditions | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
BP/CN/HKUST (0.15g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 74% | [ | |||||||||
Defective Borate decorated Polymer-CN (0.2g) | 300W halogen lamp, 420‒700 nm | 4.5 L (2.4 mL min-1) | 500 ppb | 44.1% | [ | |||||||||
g-C3N4 (0.05g) | Xenon lamp | 1.6 L (2.4 L min-1) | 600 ppb | 68% | [ | |||||||||
g-C3N4 | metal halide lamp | 4.5 L | 1000 ppb (50%) | > 29.26% | [ | |||||||||
Hollow Porous Carbon Nitride | 20 W energy saving lamp | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 64% | [ | |||||||||
g-C3N4 (0.2g) | 150 W tungsten halogen lamp (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 24 mL min-1) | 550 ppb (50%) | 45% | [ | |||||||||
Type-I and Type-II g-C3N4/g-C3N4 metal-free heterostructures (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 41.3% | [ | |||||||||
α-Fe2O3/g-C3N4 (0.1g) | 300W Xenon lamp, λ ≥ 400 nm | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 60.8% | [ | |||||||||
g-C3N4/SnO2 (0.2g) | 300 W Osram, λ ≥ 420 nm | 3.0 L (3.0 L min-1) (a sampling rate = 0.6 L min-1) | 500 ppb | 44.17% | [ | |||||||||
g-C3N4/Al2O3 | two 13 W domestic energy-saving lamps | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 77.1% | [ | |||||||||
g-C3N4/TiO2 (0.1 g) | 300 W Xenon lamp (79 mW cm-2) | 4.5 L (3.0 L min-1) | 400 ppb | 38.9% | [ | |||||||||
TiO2-C3N5 (0.02 g) | 300 W Xenon lamp, λ > 400 nm | (0.6 L min-1 and 30 mL min-1) | 450 ppb | 67.1% | [ | |||||||||
Bi/TiO2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 48.2% | [ | |||||||||
Ti3+/TiO2 (0.1g) | 30 W visible LED | 4.5 L (1.0 L min-1) | 600 ppb | 55.0% | [ | |||||||||
TiO2-Ovs (0.03 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.5 L (1.0 L min-1) | 600 ppb | 60% | [ | |||||||||
Fe/TiO2 (0.2g) | 30 W LED lamp, λ > 400 nm | (1.0 L min-1) | 600 ppb (50%) | 47.91% | [ | |||||||||
Fe/TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 60% | [ | |||||||||
Au/CeO2-TiO2 (0.2 g) | two tungsten halogen lamps (150 W)/ eight mercury lamps (4 W, 365 nm) | 18 L (4.0 L min-1) | 500 ppb (83%) | 85% (UV lamp) 58% (tungsten lamp) | [ | |||||||||
Au/TiO2 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 400 nm | 4.5 L (4.0 L min-1) | 400 ppb (70%) | 31% | [ | |||||||||
Ag-TiO2-x (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | 450 ppb | 45% | [ | |||||||||
Ti3+-TiO2 (0.1 g) | 300 W Xenon arclamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 420 ppb | 60% | [ | |||||||||
TiO2 | Osram Ultra-vitalux 300 W (UV), (43.4 W cm-2) | 7.4 L (0.78 L min-1) | 500 ppb (50 ± 10%) | 53% | [ | |||||||||
TiO2 based Z-scheme photocatalyst (0.2 g) | LED lamp emitted manily at 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 31.2% | [ | |||||||||
Fe-based MOFs (0.1 g) | 150 W commercial xenon arc lamp, λ > 400 nm (100 mW cm-2) | 0.24 L | 350‒400 ppb (50%) | 76% | [ | |||||||||
Zn/Al -layered double hydroxides (0.5 g) | artificial sunlight (25 and 580 W m-2 for UV and visible) | 50 × 50 mm | 150 ppb and 600 ppb (50 ± 5%) | 55% | [ | |||||||||
ZnWO4 (0.1g) | 300 W Xenon lamp | 4.5 L (3.0 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
α-Fe2O3/SiO2 (0.5 g) | Xenon lamp (25 and 580 W/m2 for UV and visible) | (0.3 L min-1) | 150 ppb (50± 5%) | 24% | [ | |||||||||
CQDs-FeOOH (0.1 g) | 300 W Xenon lamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 400 ppb | 34% | [ | |||||||||
NH2-UiO-66(Zr) (0.2 g) | 150 W tungsten lamps, λ ≥ 420 nm | (4.0 L min-1) | 550 ppb (70%) | 88% | [ | |||||||||
Ni/LDH-X (0.4 g) | 8 W commercial UV lamp | 4.5 L (2.4 mL min-1) | 500 ppb | 42.1% | [ | |||||||||
I-BiOCOOH (0.1g) | 150 W tungsten halogen lamp | 4.5 L (3.3 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 49.7% | [ |
Table 1 Performance summary of photocatalytic oxidation for NO removal.
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LaFeO3/SrTiO3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.93 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb (30 ± 5%) | 40% | [ | |||||||||
SrTiO3/SrCO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | ppb | 47% | [ | |||||||||
Na0.5Bi0.5TiO3 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) | 400 ppb (70%) | 200 ppb min-1 | [ | |||||||||
Pb2Bi4Ti5O18 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 1 L min-1 | 500 ppb | 50.3% | [ | |||||||||
Pd/PdO/β-Bi2O3 (0.05 g) | Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 47.6% | [ | |||||||||
SrBi2Ta2O9 (0.05 g) | 300 W Xenon lamp | 0.35 L (1.7 L min-1) | 600 ppb (50%) | 51% | [ | |||||||||
BiOI/ZnWO4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (35 mW cm-2) | 4.5 L | 430 ppb (30±5%) | 32.32% | [ | |||||||||
Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 59% | [ | |||||||||
S-scheme Bi2Ti2O7/CaTiO3 (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (1 L min-1) | 600 ppb | 77.7% | [ | |||||||||
BP/monolayer Bi2WO6 (0.08 g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 67 % | [ | |||||||||
Bi0@Bi2WO6‒x | visible light irradiation, λ ≥ 420 nm | — | — | 53.4% | [ | |||||||||
Bi2WO6-Ovs (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 550 ppb | 55% | [ | |||||||||
Bi@OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 40.8% | [ | |||||||||
OV-Bi2O2CO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb | 32% | [ | |||||||||
Bi/(BiO)2CO3 (0.2 g) | 100 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 58% | [ | |||||||||
Ag clusters-grafted (BiO)2CO3 (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (3.3 L min-1) | 550 ppb (60%) | 52.8% | [ | |||||||||
(BiO)2CO3-BiO2-x-graphene (0.1 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 54% | [ | |||||||||
Bi2O2CO3/Bi4O5Br2 (0.108 g) | 300 W Xenon lamp | 4.5 L | 430 ppb (30±5%) | 53.2% | [ | |||||||||
(BiO)2CO3/MoS2 (0.2 g) | 150 W tungsten halogen lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 57% | [ | |||||||||
Bi2O2CO3-MoS2-carbon nanofibers (0.15 g) | Xenon lamp, λ ≥ 420 nm | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 68% | [ | |||||||||
Bi2O2CO3-g-C3N4 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L (3 L min-1) | 400 ppb (70%) | 35% | [ | |||||||||
(BiO)2CO3/graphene (0.1 g) | 100 W tungsten halogen lamp | 4.5 L (2.4 L min-1) | 600 ppb (70%) | 63.5% | [ | |||||||||
Bi-BiPO4 (0.1 g) | 300 W Xenon lamp | 0.40 L (1.2 L min-1) | 400 ppb | 32.8% | [ | |||||||||
Bi @Bi2O2SiO3 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 15 mL min-1) | 450 ppb | 50.2% | [ | |||||||||
Bi4MoO9/Bi (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 550 ppb (50%) | 57.2% | [ | |||||||||
OV Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L | 500 ppb | 54% | [ | |||||||||
Bi/Bi2MoO6 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 68.1% | [ | |||||||||
P123-Bi@Bi2O3 (0.1 g) | 300 W Xenon lamp, λ ≥ 420 nm (28.50 mW cm-2) | 4.5 L (3 L min-1) | 400 ppb | 41% | [ | |||||||||
Bi@BiOCl (0.1 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 67.5% | [ | |||||||||
Photocatalyst (dosage) | Irradiation condition | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
Bi/ BiOCl/C (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | ppb level | 53.0% | [ | |||||||||
BiOCl/Bi12O17Cl2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min‒1) | 500 ppb (50%) | 37.2% | [ | |||||||||
Bi/GO (0.2 g) | 8 W UV lamp, λ = 280 nm | 4.5 L (2.4 L min-1 and 15 mL min‒1) | 660 ppb (50%) | 50.2% | [ | |||||||||
Bi-NPs@GO (0.2 g) | 15 W UV lamp, 280-320 nm | 4.5 L (2.4 L min-1) (A sampling rate = 1.0 L min‒1) | 500 ppb (50%) | 42.3% | [ | |||||||||
Ag/AgCl@BiOCl/Bi12O17Cl2 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb (50%) | 49.5% | [ | |||||||||
CaSO4-BiOI (0.2g) | visible light region (420-780 nm) | — | — | 54.4% | [ | |||||||||
BiOI (0.15 g) | LED lamp, λ = 448 nm | 4.5 L (1 L min-1) | 600 ppb | 65% | [ | |||||||||
Bi@BiOI (0.1g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb | 40.8% | [ | |||||||||
I-doped BiOIO3/g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
Sb2WO6/g-C3N4 (0.05g) | Xenon lamp | 8.4 L | 400 ppb | 68% | [ | |||||||||
Bi4O5Br2/GO (0.15g) | 500 W Xeon lamp, 420-780nm (174 mW·cm‒2) | 2.0 L (1.8 L min-1) | 560 ppb (50%) | 51.7% | [ | |||||||||
BiOBr/C3N4 (0.1g) | 100 W tungsten halogen lamp, λ > 420 nm | 4.5 L (2.4 L min-1) | 660 ppb (40-80%) | 32.7% | [ | |||||||||
BiOBr-graphene (0.1g) | 300 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (4 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
WO3/Bi4O5Br2 (0.2 g) | 500 W Xenon lamp (λ = 420-780 nm) | 2.0 L (1.8 L min-1) (a sampling rate = 1.2 L min-1) | 500 ppb (50%) | 50% | [ | |||||||||
Bi0/CeO2-δ (0.1g) | 300 W Xenon lamp, λ ≥ 420 nm | 4.5 L | 430 ppb | 43.7% | [ | |||||||||
Br-BiOCOOH (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 37.8% | [ | |||||||||
Bi2Sn2O7 (0.2g) | 300 W Xenon arc lamp | 4.5 L (3 L min-1) | 400 ppb (30±5%) | 37% | [ | |||||||||
Bi/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) (a sampling rate = 1.0 L min-1) | 500 ppb (50%) | 54.8% | [ | |||||||||
Bi-CN (0.2g) | LED lamp, λ = 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 70.4% | [ | |||||||||
g-C3N4-Co3O4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 57% | [ | |||||||||
PICN(S)GA-75 aerogel (0.08g) | 300 W Xenon lamp (simulated solar light) | 2.26 L (2.0 L min-1) | 600 ppb | 66% | [ | |||||||||
Ag/g-C3N4 (0.2g) | 300 W tungsten halogen lamp, λ = 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 600 ppb (50%) | 54.3% | [ | |||||||||
g-C3N4/Ti3+ self-doped TiO2 | 300 W Xenon lamp, λ ≥ 420 nm | 0.85L (1.2 L min-1) | 400 ppb (50%) | 25.8% | [ | |||||||||
celestite/g-C3N4 (0.05g) | 30 W LED lamp | 0.785 L (1.0 L min-1) | 600 ppb | 67.5% | [ | |||||||||
g-C3N4 nanosheets (0.2g) | LED lamp, λ > 420 nm (0.16 W cm-2) | 4.5 L (1.0 L min-1) | 400-600 ppb | 65% | [ | |||||||||
g-C3N4/K,Na (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 36.8% | [ | |||||||||
Au-CMTKP-g-C3N4 | 150 W tungsten halogen lamp, λ ≥ 420 nm (0.18 W cm-2) | 40 cm × 6 cm (3.0 L min-1) | 300 ppb | 57.3% ± 0.46% | [ | |||||||||
g-C3N4-H (0.1g) | 150 W commercial tungsten halogen lamp, λ > 420 nm | 4.5 L | 600 ppb | 41.84% | [ | |||||||||
BaWO4/g-C3N4 (0.1g) | LED lights (12 W), λ > 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) (a sampling rate = 1.0 L min-1) | 520 ppb | 42.17% | [ | |||||||||
g-C3N4 (0.05 g) | Xenon lamp, λ > 420 nm (14 W m-2) | 4.5 L (1.0 L min-1) | 600 ppb | 80% | [ | |||||||||
Sr doped g-C3N4 (0.05g) | 300 W Xenon lamp, λ > 420 nm | 0.785 L | 600 ppb | 55% | [ | |||||||||
Ca/g-C3N4 (0.2g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | — | 500 ppb (50%) | 54.78% | [ | |||||||||
Au nanoparticles @g-C3N4 (0.2g) | 150 W halogen tungsten lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 500 ppb | 41% | [ | |||||||||
g-C3N4 nanosheets (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 33.9% | [ | |||||||||
g-C3N4-TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | 0.114 L (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 44% | [ | |||||||||
AgVO3-g-C3N4 (0.1g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb | 65% | [ | |||||||||
PI-g-C3N4 (0.05g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L (1.0 L min-1) | 600 ppb | 47% | [ | |||||||||
CN-Ola (0.1g) | 150 W tungsten halogen lamp | 4.5 L | 500 ppb | 50.4% | [ | |||||||||
O-ACN-Ba (0.2g) | 150 W tungsten halogen lamp, 0.16 W cm-2 | 4.5 L | 500 ppb | 56.4% | [ | |||||||||
g-C3N4 nanosheets (0.2 g) | LED lamp, λ > 400 nm | 4.5 L | 600 ppb | 35.8% | [ | |||||||||
Photocatalyst (dosage) | Irradiation conditions | Reactor volume (flow rate) | NO concentration (humidity) | Maximum efficiency | Ref. | |||||||||
BP/CN/HKUST (0.15g) | 300 W Xenon lamp | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 74% | [ | |||||||||
Defective Borate decorated Polymer-CN (0.2g) | 300W halogen lamp, 420‒700 nm | 4.5 L (2.4 mL min-1) | 500 ppb | 44.1% | [ | |||||||||
g-C3N4 (0.05g) | Xenon lamp | 1.6 L (2.4 L min-1) | 600 ppb | 68% | [ | |||||||||
g-C3N4 | metal halide lamp | 4.5 L | 1000 ppb (50%) | > 29.26% | [ | |||||||||
Hollow Porous Carbon Nitride | 20 W energy saving lamp | 1.6 L (2.4 L min-1) | 600 ppb (50%) | 64% | [ | |||||||||
g-C3N4 (0.2g) | 150 W tungsten halogen lamp (0.16 W cm-2) | 4.5 L (2.4 L min-1 and 24 mL min-1) | 550 ppb (50%) | 45% | [ | |||||||||
Type-I and Type-II g-C3N4/g-C3N4 metal-free heterostructures (0.1g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 41.3% | [ | |||||||||
α-Fe2O3/g-C3N4 (0.1g) | 300W Xenon lamp, λ ≥ 400 nm | 2.26 L (1.2 L min-1) | 600 ppb (50%) | 60.8% | [ | |||||||||
g-C3N4/SnO2 (0.2g) | 300 W Osram, λ ≥ 420 nm | 3.0 L (3.0 L min-1) (a sampling rate = 0.6 L min-1) | 500 ppb | 44.17% | [ | |||||||||
g-C3N4/Al2O3 | two 13 W domestic energy-saving lamps | 4.5 L (2.4 L min-1) | 600 ppb (50%) | 77.1% | [ | |||||||||
g-C3N4/TiO2 (0.1 g) | 300 W Xenon lamp (79 mW cm-2) | 4.5 L (3.0 L min-1) | 400 ppb | 38.9% | [ | |||||||||
TiO2-C3N5 (0.02 g) | 300 W Xenon lamp, λ > 400 nm | (0.6 L min-1 and 30 mL min-1) | 450 ppb | 67.1% | [ | |||||||||
Bi/TiO2 (0.2 g) | 150 W tungsten halogen lamp, λ ≥ 420 nm | 4.5 L (2.4 L min-1 and 15 mL min-1) | 600 ppb (50%) | 48.2% | [ | |||||||||
Ti3+/TiO2 (0.1g) | 30 W visible LED | 4.5 L (1.0 L min-1) | 600 ppb | 55.0% | [ | |||||||||
TiO2-Ovs (0.03 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.5 L (1.0 L min-1) | 600 ppb | 60% | [ | |||||||||
Fe/TiO2 (0.2g) | 30 W LED lamp, λ > 400 nm | (1.0 L min-1) | 600 ppb (50%) | 47.91% | [ | |||||||||
Fe/TiO2 (0.05g) | 500 W Xenon arc lamp, 420-700 nm (35.8 mW cm-2) | (1.2 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (55%) | 60% | [ | |||||||||
Au/CeO2-TiO2 (0.2 g) | two tungsten halogen lamps (150 W)/ eight mercury lamps (4 W, 365 nm) | 18 L (4.0 L min-1) | 500 ppb (83%) | 85% (UV lamp) 58% (tungsten lamp) | [ | |||||||||
Au/TiO2 (0.1 g) | 300 W tungsten halogen lamp, λ ≥ 400 nm | 4.5 L (4.0 L min-1) | 400 ppb (70%) | 31% | [ | |||||||||
Ag-TiO2-x (0.05 g) | 300 W Xenon lamp, λ ≥ 420 nm | 0.785 L | 450 ppb | 45% | [ | |||||||||
Ti3+-TiO2 (0.1 g) | 300 W Xenon arclamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 420 ppb | 60% | [ | |||||||||
TiO2 | Osram Ultra-vitalux 300 W (UV), (43.4 W cm-2) | 7.4 L (0.78 L min-1) | 500 ppb (50 ± 10%) | 53% | [ | |||||||||
TiO2 based Z-scheme photocatalyst (0.2 g) | LED lamp emitted manily at 448 nm | 4.5 L (1.0 L min-1) | 600 ppb | 31.2% | [ | |||||||||
Fe-based MOFs (0.1 g) | 150 W commercial xenon arc lamp, λ > 400 nm (100 mW cm-2) | 0.24 L | 350‒400 ppb (50%) | 76% | [ | |||||||||
Zn/Al -layered double hydroxides (0.5 g) | artificial sunlight (25 and 580 W m-2 for UV and visible) | 50 × 50 mm | 150 ppb and 600 ppb (50 ± 5%) | 55% | [ | |||||||||
ZnWO4 (0.1g) | 300 W Xenon lamp | 4.5 L (3.0 L min-1) (a sampling rate = 0.7 L min-1) | 400 ppb (70%) | 40% | [ | |||||||||
α-Fe2O3/SiO2 (0.5 g) | Xenon lamp (25 and 580 W/m2 for UV and visible) | (0.3 L min-1) | 150 ppb (50± 5%) | 24% | [ | |||||||||
CQDs-FeOOH (0.1 g) | 300 W Xenon lamp, λ > 420 nm | 4.5 L (3.0 L min-1) | 400 ppb | 34% | [ | |||||||||
NH2-UiO-66(Zr) (0.2 g) | 150 W tungsten lamps, λ ≥ 420 nm | (4.0 L min-1) | 550 ppb (70%) | 88% | [ | |||||||||
Ni/LDH-X (0.4 g) | 8 W commercial UV lamp | 4.5 L (2.4 mL min-1) | 500 ppb | 42.1% | [ | |||||||||
I-BiOCOOH (0.1g) | 150 W tungsten halogen lamp | 4.5 L (3.3 L min-1) (a sampling rate = 1.0 L min-1) | 550 ppb (60%) | 49.7% | [ |
Fig. 4. SEM images of (BiO)2CO3 (a,b) and Bi/(BiO)2CO3 (c,d). (e) Photocatalytic mechanism scheme of Bi/(BiO)2CO3 under visible light irradiation: interface transfer of electrons from (BiO)2CO3 to Bi(I) and local electromagnetic field of Bi(II). Reprinted with permission from Ref. [26]. Copyright 2014, American Chemical Society. (f) Scheme of processes occurring during visible-light-driven photocatalytic NO removal on Bi@Bi2O2SiO3-3. (g) Schematic illustration of the synergistic effects of OVs and Bi metal on the photocatalytic activity. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier.
Fig. 5. (a) Band diagrams of p-Co3O4 and n-C3N4 before and after contact and photocatalytic mechanism for NO removal by CN-CO-100 composite through p-n junction under visible-light irradiation. Reprinted with permission from Ref. [60]. Copyright 2019, Wiley-VCH. (b) Proposed photocatalytic oxidation NO mechanism for the 10% Bi-CN composite. Reprinted with permission from Ref. [59]. Copyright 2017, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences. (c) Schematic synergy of the size-dependent heterojunction effect and SPR effect of Bi NPs on the photocatalytic activity. Reprinted with permission from Ref. [58]. Copyright 2017, Elsevier. (d) Schematic illustration of the fabrication of AVO-CN-GA composite Reprinted with permission from Ref. [76]. Copyright 2019, Elsevier.
Fig. 6. (a) The light dependent electrochemical current using g-C3N4 and Ns-g-C3N4 coated working electrodes. Reprinted with permission from Ref. [121]. Copyright 2017, Elsevier. (b) Mechanism of simultaneous photo-oxidation and photo-reduction on Ag-TiO2?x. Reprinted with permission from Ref. [100]. Copyright 2017, Elsevier.
Fig. 7. SEM images of Pb2Bi4Ti5O18. (a) Nanospherical; (b) Nanoparticle; (c) Rectangular; (d) Nanosheet. (e) Photocatalytic experiments of NO oxidation over Pb2Bi4Ti5O18 samples and schematic of photocatalytic reactions. Reprinted with permission from Ref. [15]. Copyright 2017, American Chemical Society.
Fig. 8. (a) BET surface areas, pore volume, pore size and optical band. (b) Photocurrent transient responses. (c) EIS Nyquist plots of BSO-x. Reprinted with permission from Ref. [57]. Copyright 2016, American Chemical Society.
Fig. 9. (a) The NO removal efficiency as a function of the (2 0 0)/(0 0 10) peak intensity ratio. (b) computational adsorption models. (c) PL spectra. (d) adsorption energy of NO. Reprinted with permission from Ref. [17]. Copyright 2022, Elsevier.
Fig. 10. UV-vis DRS (a), photoluminescence spectra (b) of CN and Au@CN. Reprinted with permission from Ref. [73]. Copyright 2019, Elsevier. (c) UV-vis DRS of pristine Bi, TiO2 and the BiNPs/TiO2 nanocomposites. Transient photocurrent densities (d), TEM image (e), HRTEM image (f) and higher magnification HRTEM image (g) of the typical Bi-Ti-50 sample. Reprinted with permission from Ref. [93]. Copyright 2016, the Royal Society of Chemistry.
Fig. 11. Schematic diagram for different types of heterojunctions. (a) Type I heterojunction; (b) Type II heterojunction; (c) Type III heterojunction; (d) Z-scheme; (e) p-n heterojunction; (f) Schottky junction. Reprinted with permission from Ref. [145]. Copyright 2020, American Chemical Society. S-scheme heterojunction (g) and Charge-transfer processes (h) in an S-scheme heterojunction. Reprinted with permission from Ref. [146]. Copyright 2020, Elsevier.
Fig. 12. (a) The change mechanism of the morphology of Sx. The red spot represent SrCO3, and the blue spot represent SrTiO3. (b) Photocatalysis mechanism of SrTiO3 decorated with SrCO3 under light irradiation. Reprinted with permission from Ref. [13]. Copyright 2018, Elsevier. (c) Constructing a 2D/2D Bi2O2CO3/Bi4O5Br2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Reprinted with permission from Ref. [29]. Copyright 2019, Elsevier.
Fig. 13. (a) Schematic illustration of the fabrication of BOC-MoS2-CNFs, (b) Photocatalytic mechanism of NO removal by BOC-MoS2-CNFs. Reprinted with permission from Ref. [31]. Copyright 2017, Elsevier. (c) Schematic of photocatalytic reactions for the NO removal over 2D/0D g-C3N4/SnO2 S-scheme photocatalyst. Reprinted with permission from Ref. [89]. Copyright 2021, Elsevier.
Fig. 14. (a) Schematic illustration of the fabrication of a honeycomb-like CN isotype heterojunction. (b) Photocatalytic mechanism of NO removal by UT-CN samples under visible-light illumination. Reprinted with permission from Ref. [83]. Copyright 2018, American Chemical Society. (c) Illustration of type I and type II g-C3N4/ g-C3N4 heterostructures working under visible light irradiation. Reprinted with permission from Ref. [87]. Copyright 2015, the Royal Society of Chemistry.
Fig. 15. (a) A possible photocatalytic mechanism for efficient treatment of NOx and hydrogen production of BaWO4/g-C3N4 under visible light irradiation. (b) Photocatalytic activity of NO removal. (c) Solar-driven photocatalytic hydrogen-evolving rates of 7%-Ba-CN, g-C3N4 and BaWO4. Reprinted with permission from Ref. [69]. Copyright 2020, Elsevier.
Fig. 16. (a) Schematic illustration of the proposed mechanism for charge transfer and radical generation under visible-light irradiation. Reprinted with permission from Ref. [63]. Copyright 2019, Elsevier. (b) Local atomic structure around Fe. (c) HAADF-STEM images of Fe1/TiO2-HMSs (TF50) sample. Reprinted with permission from Ref. [96]. Copyright 2020, John Wiley and Sons. (d) PL spectra of BiOCOOH and Br doped BiOCOOH. Reprinted with permission from Ref. [56]. Copyright 2015, MDPI.
Fig. 17. (a) The designed reaction system for the in-situ DRIFTS signal recording system. (b) Photos of gas diagram. (c) HVC dome. (d) FT-IR spectrometer. (e) Light source. (f) A photo of in-situ DRIFTS under working; In-situ DRIFT spectra recorded during NO photocatalytic reaction over BiOSi (g) and Bi@BiOSi-3 sample (h). Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier.
Fig. 18. In-situ FT-IR spectra of the adsorption process of NO + O2 for 110-BOC (a) and 001-BOC (c). The photocatalytic degradation of NO on the surface for 110-BOC (b) and 001-BOC (d) under visible light irradiation. (e) Photocatalytic NO removal curves under UV light irradiation: 110-BOC and 001-BOC. (f) photocatalytic specific reactivity calculation of 110-BOC and 001-BOC. (g) Major intermediate adsorption products on 110-BOC and 001-BOC. Reprinted with permission from Ref. [155]. Copyright 2019, the Royal Society of Chemistry. (h) FTIR spectra of BiOCl-OV during photocatalytic NO oxidation. (i) Dynamic change of the •O2?/NO3? absorbance increase along with NO absorbance peak decrease. (j) Influence of generated •O2? on the NO oxidation kinetic constants and the NO2 concentration. Reprinted with permission from Ref. [156]. Copyright 2018, American Chemical Society.
Fig. 19. (a) Electrostatic potentials, work functions on (2 0 0), (0 0 1)-BiO, and (0 0 1)-TaO of SrBi2Ta2O9 substrates. Reprinted with permission from Ref. [17]. Copyright 2022, Elsevier. (b) Relaxed structure of the first layer of Ti48O96, FeTi47O96 and FeTi48O96. Reprinted with permission from Ref. [97]. Copyright 2015, Elsevier. (c) Density of states of BiOI and BiOI with oxygen vacancies (OV-BiOI). Reprinted with permission from Ref. [48]. Copyright 2019, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences. (d) NO and O2 coadsorption in BiOSi and side-Bi-BiOSi configuration. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier. (e) DFT calculated adsorption energy of several major intermediate adsorption products of the BOC, OV-BOC and Bi@OV-BOC samples; Calculated free energy of NO oxidation on BOC, OV-BOC and Bi@OV-BOC surfaces. Reprinted with permission from Ref. [24]. Copyright 2019, Elsevier.
Fig. 20. Dynamics of carriers on two crystal facets: hole mobility (a), electron mobility (b), hole diffusion length (c), reaction rates of benzyl alcohol oxidation (d), steady state fluorescence (e), hole lifetime (f). Reprinted with permission from Ref. [162]. Copyright 2018, American Chemical Society. (g) Charge difference distribution of O-ACN-Ba. Photoluminescence spectra (h), the ns-level time-resolved fluorescence spectra (i), and room temperature solid state EPR spectra (j) of CN and O-ACN-Ba-030. Reprinted with permission from Ref. [79]. Copyright 2018, Elsevier. (k) Photoluminescence spectra. (l) Room temperature solid ESR spectra in dark and under visible-light irradiation for 15 min of CN and OCN-K-CN Reprinted with permission from Ref. [86]. Copyright 2018, American Chemical Society.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[6] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[7] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[8] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[9] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[10] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[14] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[15] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||