Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (7): 1906-1917.DOI: 10.1016/S1872-2067(21)64018-4
• Articles • Previous Articles Next Articles
Neng Lia,b,*(), Jiahe Penga,b, Zuhao Shia, Peng Zhangc, Xin Lid,#(
)
Received:
2021-10-19
Accepted:
2021-12-24
Online:
2022-07-18
Published:
2022-05-20
Contact:
Neng Li, Xin Li
Supported by:
Neng Li, Jiahe Peng, Zuhao Shi, Peng Zhang, Xin Li. Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx-MXenes for highly selective CO2 electrochemical reduction[J]. Chinese Journal of Catalysis, 2022, 43(7): 1906-1917.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)64018-4
Fig. 1. Optimized models of Ti2CO2 (a) and Ti2CS2 (b) (color scheme: Ti, cyan; C, brown; O, red; S, yellow). Circles represent the possible sites of TM on Ti2CTx. Calculated DOS of Ti2CO2 (c) and Ti2CS2 (d). Fermi energy level is set to zero.
Fig. 2. (a) Top view of three adsorption configurations (H1, H2, and T1 sites) of TM atoms on Ti2CO2 and Ti2CS2. (b) Side view of the TM adsorption configurations at Ti2CTx H1 sites. (c) Binding energies of transition metal atoms on Ti2CO2 and Ti2CS2.
Fig. 3. (a) Optimized geometric structures of CO2 adsorbed on TM@Ti2CO2 and TM@Ti2CS2. (b) Possible chemisorption path for the interaction of CO2 with TM@Ti2CTx surfaces. (c) Process of CO2 adsorption with a V-shaped configuration from linear CO2 in the gas phase with the inclusion of transition state calculation.
Metal | Ti2CO2 | Ti2CS2 | |||||
---|---|---|---|---|---|---|---|
BE (eV) | BD (TM-O, Å) | BA (∠OCO, °) | BE (eV) | BD (TM-O, Å) | BA (∠OCO, °) | ||
V | -0.3104 | 1.97 | 142.1 | -0.5682 | 2.20 | 177.4 | |
Cr | -0.6850 | 1.99 | 146.7 | -0.5015 | 2.21 | 177.0 | |
Mn | -0.4306 | 1.96 | 144.9 | -0.4784 | 2.25 | 178.8 | |
Fe | -0.4966 | 1.99 | 151.2 | -0.3923 | 2.21 | 179.2 | |
Co | -0.3250 | 1.99 | 150.4 | -0.1630 | 2.45 | 179.9 | |
Ni | -0.2074 | 1.98 | 154.7 | -0.2258 | 2.46 | 179.9 |
Table 1 Binding energy (BE), binding distance (BD), and bond angle (BA) of CO2 adsorbed on TM@Ti2CO2 and TM@Ti2CS2 in the most stable configuration.
Metal | Ti2CO2 | Ti2CS2 | |||||
---|---|---|---|---|---|---|---|
BE (eV) | BD (TM-O, Å) | BA (∠OCO, °) | BE (eV) | BD (TM-O, Å) | BA (∠OCO, °) | ||
V | -0.3104 | 1.97 | 142.1 | -0.5682 | 2.20 | 177.4 | |
Cr | -0.6850 | 1.99 | 146.7 | -0.5015 | 2.21 | 177.0 | |
Mn | -0.4306 | 1.96 | 144.9 | -0.4784 | 2.25 | 178.8 | |
Fe | -0.4966 | 1.99 | 151.2 | -0.3923 | 2.21 | 179.2 | |
Co | -0.3250 | 1.99 | 150.4 | -0.1630 | 2.45 | 179.9 | |
Ni | -0.2074 | 1.98 | 154.7 | -0.2258 | 2.46 | 179.9 |
Fig. 4. PDOS of C and O orbitals of CO2 as well as the 3d orbital of Cr in Cr@Ti2CO2 before (a) and after (c) adsorption; PDOS of C and O orbitals of CO2 and the 3d orbital of Cr in Cr@Ti2CS2 before (b) and after (d) adsorption. (e) Bader differences of C and O atoms in CO2 adsorbed on TM@Ti2CO2 and TM@Ti2CS2. (f) Bader charge difference of Ti2CO2, Ti2CS2, and TM anchored on Ti2CTx. (g) Bader charge difference of O or S atoms on the upper surface side. (h) Gibbs free energy changes of the first hydrogenation reactions on TM@Ti2CO2 and TM@Ti2CS2.
Fig. 6. DFT-optimized adsorption structures and the free energy diagrams for the elementary hydrogenation steps of CO2 reduction on V@Ti2CO2 (a), Cr@Ti2CO2 (b), Mn@Ti2CO2 (c), Fe@Ti2CO2 (d), Co@Ti2CO2 (e), and Ni@Ti2CO2 (f). Only the minimum energy pathways are shown.
Fig. 7. DFT-optimized adsorption structures and the free energy diagrams for the elementary hydrogenation steps of CO2 reduction on V@Ti2CS2 (a), Cr@Ti2CS2 (b), Mn@Ti2CS2 (c), Fe@Ti2CS2 (d), Co@Ti2CS2 (e), and Ni@Ti2CS2 (f). Only the minimum energy pathways are shown.
Catalyst | PDS | UL (V) | Production |
---|---|---|---|
V@Ti2CO2 | *OH + H+ + e- → *H2O | 0.57 | CH4 |
Cr@Ti2CO2 | *CO + H++ e- → *CHO | 0.53 | CH4 |
Mn@Ti2CO2 | *HCOOH + H++ e- → *CH2OOH | 0.41 | CH4 |
Fe@Ti2CO2 | *HCOOH + H++ e- → *CHO + H2O | 0.54 | CH4 |
Co@Ti2CO2 | *CO → CO + * | 0.70 | CO |
Ni@Ti2CO2 | *CO → CO + * | 0.48 | CO |
V@Ti2CS2 | *OH + H+ + e- → *H2O | 0.74 | CH4 |
Cr@Ti2CS2 | *HCOO + H++ e- → *HCOOH | 0.15 | CH4 |
Mn@Ti2CS2 | *HCOO + H++ e- → *HCOOH | 0.18 | CH4 |
Fe@Ti2CS2 | *HCOOH + H++ e- → *CH2OOH | 0.17 | CH4 |
Co@Ti2CS2 | *CO2 + H++ e- → *OCHO | 0.18 | HCOOH |
Ni@Ti2CS2 | *CO2 + H++ e- → *COOH | 0.71 | HCOOH |
Table 2 DFT-predicted potential determining steps (PDSs), UL values, and possible product on TM@Ti2CO2 and TM@Ti2CS2.
Catalyst | PDS | UL (V) | Production |
---|---|---|---|
V@Ti2CO2 | *OH + H+ + e- → *H2O | 0.57 | CH4 |
Cr@Ti2CO2 | *CO + H++ e- → *CHO | 0.53 | CH4 |
Mn@Ti2CO2 | *HCOOH + H++ e- → *CH2OOH | 0.41 | CH4 |
Fe@Ti2CO2 | *HCOOH + H++ e- → *CHO + H2O | 0.54 | CH4 |
Co@Ti2CO2 | *CO → CO + * | 0.70 | CO |
Ni@Ti2CO2 | *CO → CO + * | 0.48 | CO |
V@Ti2CS2 | *OH + H+ + e- → *H2O | 0.74 | CH4 |
Cr@Ti2CS2 | *HCOO + H++ e- → *HCOOH | 0.15 | CH4 |
Mn@Ti2CS2 | *HCOO + H++ e- → *HCOOH | 0.18 | CH4 |
Fe@Ti2CS2 | *HCOOH + H++ e- → *CH2OOH | 0.17 | CH4 |
Co@Ti2CS2 | *CO2 + H++ e- → *OCHO | 0.18 | HCOOH |
Ni@Ti2CS2 | *CO2 + H++ e- → *COOH | 0.71 | HCOOH |
Fig. 9. Optimized models of Cr@OOS (a) and CO2 adsorbed on Cr@OOS (b). Top panel provides the vertical view, and the bottom panel presents the side view. (c) DFT-optimized adsorption structures and the free energy diagrams for the elementary hydrogenation steps of CO2 reduction on Cr@OOS. (d) Free energy diagrams of CO2RR on Cr@OOS with the inclusion of the solvation effect. (e) UL of CO2RR on Cr@OOS vs. HER.
Fig. 10. (a) Energy and temperature fluctuations of Cr@OOS within 10 ps in AIMD simulations at 330 K. (b) Calculated Pourbaix diagram of Cr@OOS. Gray dashed lines are the water redox potentials.
|
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[3] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[4] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[5] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[6] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[7] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[8] | Syed Shoaib Ahmad Shah, Tayyaba Najam, Jiao Yang, Muhammad Sufyan Javed, Lishan Peng, Zidong Wei. Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(8): 2193-2201. |
[9] | Cong Liu, Xuanhao Mei, Ce Han, Xue Gong, Ping Song, Weilin Xu. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1618-1633. |
[10] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
[11] | Zixun Yu, Chang Liu, Yeyu Deng, Mohan Li, Fangxin She, Leo Lai, Yuan Chen, Li Wei. Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production [J]. Chinese Journal of Catalysis, 2022, 43(5): 1238-1246. |
[12] | Qinggang Liu, Junguo Ma, Chen Chen. Rational design and precise manipulation of nano-catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 898-912. |
[13] | Haixia Gao, Kang Liu, Tao Luo, Yu Chen, Junhua Hu, Junwei Fu, Min Liu. CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment [J]. Chinese Journal of Catalysis, 2022, 43(3): 832-838. |
[14] | Rongchen Shen, Lei Hao, Yun Hau Ng, Peng Zhang, Arramel Arramel, Youji Li, Xin Li. Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(10): 2453-2483. |
[15] | Hongwei Lv, Wenxin Guo, Min Chen, Huang Zhou, Yuen Wu. Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications [J]. Chinese Journal of Catalysis, 2022, 43(1): 71-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||