Chinese Journal of Catalysis ›› 2023, Vol. 44: 67-95.DOI: 10.1016/S1872-2067(22)64152-4
• Reviews • Previous Articles Next Articles
Jinman Yanga, Zhengrui Yanga, Kefen Yanga, Qing Yua, Xingwang Zhub, Hui Xua,*(), Huaming Lia,*(
)
Received:
2022-04-08
Accepted:
2022-07-15
Online:
2023-01-18
Published:
2022-12-08
Contact:
Hui Xu, Huaming Li
About author:
Hui Xu is a professor at the Institute for Energy Research at Jiangsu University. He received a Ph.D. degree from Jiangsu University, China in 2010. He was selected for the National Youth Talent Project. His research interests are in the development of nanomaterials and their composites for hydrogen evolution and energy conversion. His research work is mainly focused on photocatalytic and electrocatalytic hydrogen evolution reactions (HER) and CO2 reduction using various nanostructures. Currently, he serves as a member of the Energy and Environment Committee of the Chinese Energy Society. More than 200 research papers have been published in international journals including ACS Nano, Adv. Energy Mater., Angew. Chem. Int. Ed., etc., with more than 19000 citations (H-Index = 74). In 2019, he was awarded the Jiangsu Outstanding Youth Fund, and he was selected as a Clarivate Analytics Global Highly Cited Scientist from 2019 to 2021. In 2021, he was selected as an Elsevier Highly Cited Scholar. In 2020, he won the Hou Debang Chemical Science and Technology Youth Award. In 2021, he won the second prize in the China Petroleum and Chemical Industry Federation Science and Technology Progress Award.Supported by:
Jinman Yang, Zhengrui Yang, Kefen Yang, Qing Yu, Xingwang Zhu, Hui Xu, Huaming Li. Indium-based ternary metal sulfide for photocatalytic CO2 reduction application[J]. Chinese Journal of Catalysis, 2023, 44: 67-95.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64152-4
Product | Reaction | ∆Hθ (kJ mol‒1) | ∆Gθ (kJ mol‒1) |
---|---|---|---|
CO | 2CO2 → 2CO + O2 | 283 | 257 |
HCOOH | 2CO2 + 2H2O → 2HCOOH + O2 | 270 | 286 |
HCHO | CO2 + H2O → HCHO + O2 | 563 | 522 |
CH3OH | 2CO2 + 4H2O → 2CH3OH + 3O2 | 727 | 703 |
CH4 | CO2 + 2H2O → CH4 + 2O2 | 890 | 818 |
Table 1 Thermodynamics for the products of CO2 photoreduction reactions.
Product | Reaction | ∆Hθ (kJ mol‒1) | ∆Gθ (kJ mol‒1) |
---|---|---|---|
CO | 2CO2 → 2CO + O2 | 283 | 257 |
HCOOH | 2CO2 + 2H2O → 2HCOOH + O2 | 270 | 286 |
HCHO | CO2 + H2O → HCHO + O2 | 563 | 522 |
CH3OH | 2CO2 + 4H2O → 2CH3OH + 3O2 | 727 | 703 |
CH4 | CO2 + 2H2O → CH4 + 2O2 | 890 | 818 |
Photocatalyst | T (°C) | P | Solution | Light source | Photosensitizer | Yield (μmol g−1) | Ref. |
---|---|---|---|---|---|---|---|
5 mg CdS@COF | 25 | 1.0 atm | 4 mL MeCN, 1 mL H2O, BIH (20 mg) | 300 W Xe lamp (λ ≥ 420 nm) | — | CO: 4057 (8 h) | [ |
0.2 mg ZnCo-OH QUNH | — | 1.0 atm | 12 mL MeCN, 3 mL H2O, 5 mL TEOA | 300 W Xe lamp (λ > 420 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 134.2 (1 h) | [ |
30 mg Pd-HPP-TiO2 | — | 1.0 atm | 2 mL H2O (bottom, gas-solid) | 300 W Xe lamp (λ > 420 nm) | — | CH4: 48; CO: 34 (1 h) | [ |
30 mg Pt@Def-CN | — | 1.0 bar | 100 µL H2O (bottom, gas-solid) | 300 W Xe lamp | — | CH4: 6.3 (1 h) | [ |
25 mg ultrathin Pb0.6Bi1.4Cs0.6O2C2 layers | — | — | 50 μL H2O | 300 W Xe lamp | — | MeOH: 26.53; CO: 17.91 (4 h) | [ |
1 mg W18O49@Co | 30 | 1.0 atm | 3 mL MeCN, 2 mL H2O, 1 mL TEOA | 300 W Xe lamp (λ ≥ 400 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 21180 (1 h) | [ |
30 mg In2O3/In2S3 | 10 | 80 kPa | 50 mL H2O | 300 W Xe lamp | — | CO: 12.22 (1 h) | [ |
Table 2 Evaluation of photocatalytic CO2 reduction performance of some catalytic systems under different test conditions.
Photocatalyst | T (°C) | P | Solution | Light source | Photosensitizer | Yield (μmol g−1) | Ref. |
---|---|---|---|---|---|---|---|
5 mg CdS@COF | 25 | 1.0 atm | 4 mL MeCN, 1 mL H2O, BIH (20 mg) | 300 W Xe lamp (λ ≥ 420 nm) | — | CO: 4057 (8 h) | [ |
0.2 mg ZnCo-OH QUNH | — | 1.0 atm | 12 mL MeCN, 3 mL H2O, 5 mL TEOA | 300 W Xe lamp (λ > 420 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 134.2 (1 h) | [ |
30 mg Pd-HPP-TiO2 | — | 1.0 atm | 2 mL H2O (bottom, gas-solid) | 300 W Xe lamp (λ > 420 nm) | — | CH4: 48; CO: 34 (1 h) | [ |
30 mg Pt@Def-CN | — | 1.0 bar | 100 µL H2O (bottom, gas-solid) | 300 W Xe lamp | — | CH4: 6.3 (1 h) | [ |
25 mg ultrathin Pb0.6Bi1.4Cs0.6O2C2 layers | — | — | 50 μL H2O | 300 W Xe lamp | — | MeOH: 26.53; CO: 17.91 (4 h) | [ |
1 mg W18O49@Co | 30 | 1.0 atm | 3 mL MeCN, 2 mL H2O, 1 mL TEOA | 300 W Xe lamp (λ ≥ 400 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 21180 (1 h) | [ |
30 mg In2O3/In2S3 | 10 | 80 kPa | 50 mL H2O | 300 W Xe lamp | — | CO: 12.22 (1 h) | [ |
Fig. 5. Crystal structure of hexagonal (a), cubic (b) and rhombohedral (c) ZnIn2S4. Reprinted with permission from Ref. [96]. Copyright 2011, Elsevier.
Fig. 6. Schematic illustration of the synthetic process (a) and CO2 reduction mechanism (b) for the QD-Re hybrid system. Reprinted with permission from Ref. [114]. Copyright 2018, the Royal Society of Chemistry. (c) The mechanism of photocatalytic reduction of CO2 on CuInS2 colloidal QDs photosensitizes Co-porphyrin catalyst. Reprinted with permission from Ref. [115]. Copyright 2021, American Chemical Society. (d) The mechanism of photocatalytic reduction of CO2 on ZnIn2S4 nanorods. Reprinted with permission from Ref. [120]. Copyright 2022, Elsevier.
Fig. 7. (a,b) HAADF-STEM images of VZn-rich one-unit-cell ZnIn2S4. (c) Intensity profile corresponding to the dark cyan arrow in (b). (d) EPR spectra of VZn-rich one-unit-cell ZnIn2S4 and VZn-poor one-unit-cell ZnIn2S4. (e) Schematic diagram of photocatalytic CO2 reduction reaction process on the surface of VZn-rich one-unit-cell ZIS layers. ultrafast TA spectroscopy of VZn-poor one-unit-cell ZnIn2S4 (f) and VZn-rich one-unit-cell ZnIn2S4 (g). Reprinted with permission from Ref. [122]. Copyright 2017, American Chemical Society.
Fig. 8. (a) Schematic illustration of the VS-CdIn2S4 photocatalyst fabricated process. S 2p in XPS (b) and EPR spectra (c) of CdIn2S4 and VS-CdIn2S4. (d) Schematic diagram of photocatalytic CO2 reduction reaction process on the VS-CdIn2S4 photocatalyst. Reprinted with permission from Ref. [123]. Copyright 2020, Elsevier. (e) The dual-metal-site catalytic systems of VS-CuIn5S8 for CO2 photoreduction into CH4. (f) Photocatalytic CO2 reduction activity comparison. (g) Performance durability testing of VS-CuIn5S8 single-unit-cell layers. Reprinted with permission from Ref. [36]. Copyright 2019, Nature.
Fig. 9. (a) Proposed mechanism for photocatalytic CO2 reduction over phosphorus-doped ZnIn2S4 (P-ZIS). Reprinted with permission from Ref. [128] Copyright 2021, American Chemical Society. (b) Proposed mechanism for photocatalytic CO2 reduction over oxygen-doped ZnIn2S4 (O-ZIS) under visible light. Reprinted with permission from Ref. [129]. Copyright 2021, Elsevier.
Photocatalyst | Light source | Experimental condition | Yield (μmol·g-1·h-1) | Ref. |
---|---|---|---|---|
20 mg D-Y-TiO2@ZnIn2S4 | 0.240 W cm−2 LED light (λ = 420 nm) | 10 mL MeCN, 0.1 mol L−1 TEOA, 1/80 mol L−1 BIH | CO: 40.66; H2: 28.40 | [ |
10 mg Co3O4@CdIn2S4 | 300 W Xe lamp (λ > 400 nm) | 400 μmol 2,2-bipyridine, 8 μmol CoCl2, 4 mL TEOA, 4 mL H2O, 16 mL MeCN | CO: 5300 | [ |
10 mg WQDs/CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 10 mL H2O | CO: 8.2; CH4: 1.6 | [ |
0.1 g ZnIn2S4/BiVO4 | 300 W Xe lamp | water vapor | CO: 4.75; CH4: 0.5 | [ |
meso-TiO2@ZnIn2S4/Ti3C2 MXene | 300 W Xe lamp | 0.5 mL H2O | CO: 10.17; CH4: 11.33 | [ |
0.1 g PCMT@In2O3/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 101.62 | [ |
25 mg TiO2@ZnIn2S4 | 300 W Xe lamp | 10 mL H2O | CO: 9.28; CH4: 4.26; CH3OH: 4.78 | [ |
50 mg KCa2Nb3O10/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 4.69 | [ |
10 mg CdIn2S4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 25 mL reaction solution (140 mL of KHCO3 (0.5 mol L−1), 1.0000 g 2,2-bipyridine, 0.1540 g CoCl2⋅6H2O, 0.1 L TEOA, 0.2 L MeCN) | CO: 1194.5; H2: 475.7 | [ |
4 mg In2S3-CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg bipyridine, 2 μmol CoCl2, 1 mL TEOA, 2 mL H2O, 3 mL MeCN | CO: 825 | [ |
10 mg ZnS/ZnIn2S4 | 300 W halogen lamp | 100 ml 0.5 wt% Pt (H2PtCl6) 10 vol% CH3OH | CH3CHO: 61.27; CH3OH: 0.228 | [ |
2 mg g-C3N4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg of 2,2-bipyridine, 2 μmol CoCl2, 1 mL TEOA, 3 mL MeCN, 2 mL H2O, | CO: 7368.7 | [ |
10 mg g-C3N4/Au/ZnIn2S4 | 300 W Xe lamp | 15 mg 2,2-bipyridine, 2 μmol CoCl2, 2 mL TEOA, 6 mL MeCN, 4 mL H2O | CO: 242.3 | [ |
50 mg PCN/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 892 | [ |
50 mg ZnIn2S4@CNO | 300 W Xe lamp (λ > 400 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 253.8; CH4: 23.6 | [ |
50 mg CuInS2/Au/g-C3N4 | 300 W Xe lamp (λ > 400 nm) | water vapor | CO: 2.43; CH4: 0.15 | [ |
0.1 g ZnIn2S4/N-doped graphene | 300 W Xe lamp | 10 mL H2O | CO: 2.45; CH4: 1.01; CH3OH: 1.37 | [ |
0.1 g CdIn2S4/mpg-C3N4 | 300 W Xe lamp (λ > 420 nm) | 100 mL aqueous solution, 0.1 mol L−1 NaOH | CH3OH: 42.7 | [ |
50 mg NH2-UiO-66/CdIn2S4 | 300 W Xe lamp AM 1.5 G filter | 100 mL H2O | CO: 11.24; CH4: 2.92 | [ |
Table 3 Photocatalytic CO2 reduction properties of some heterojunction materials.
Photocatalyst | Light source | Experimental condition | Yield (μmol·g-1·h-1) | Ref. |
---|---|---|---|---|
20 mg D-Y-TiO2@ZnIn2S4 | 0.240 W cm−2 LED light (λ = 420 nm) | 10 mL MeCN, 0.1 mol L−1 TEOA, 1/80 mol L−1 BIH | CO: 40.66; H2: 28.40 | [ |
10 mg Co3O4@CdIn2S4 | 300 W Xe lamp (λ > 400 nm) | 400 μmol 2,2-bipyridine, 8 μmol CoCl2, 4 mL TEOA, 4 mL H2O, 16 mL MeCN | CO: 5300 | [ |
10 mg WQDs/CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 10 mL H2O | CO: 8.2; CH4: 1.6 | [ |
0.1 g ZnIn2S4/BiVO4 | 300 W Xe lamp | water vapor | CO: 4.75; CH4: 0.5 | [ |
meso-TiO2@ZnIn2S4/Ti3C2 MXene | 300 W Xe lamp | 0.5 mL H2O | CO: 10.17; CH4: 11.33 | [ |
0.1 g PCMT@In2O3/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 101.62 | [ |
25 mg TiO2@ZnIn2S4 | 300 W Xe lamp | 10 mL H2O | CO: 9.28; CH4: 4.26; CH3OH: 4.78 | [ |
50 mg KCa2Nb3O10/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 4.69 | [ |
10 mg CdIn2S4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 25 mL reaction solution (140 mL of KHCO3 (0.5 mol L−1), 1.0000 g 2,2-bipyridine, 0.1540 g CoCl2⋅6H2O, 0.1 L TEOA, 0.2 L MeCN) | CO: 1194.5; H2: 475.7 | [ |
4 mg In2S3-CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg bipyridine, 2 μmol CoCl2, 1 mL TEOA, 2 mL H2O, 3 mL MeCN | CO: 825 | [ |
10 mg ZnS/ZnIn2S4 | 300 W halogen lamp | 100 ml 0.5 wt% Pt (H2PtCl6) 10 vol% CH3OH | CH3CHO: 61.27; CH3OH: 0.228 | [ |
2 mg g-C3N4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg of 2,2-bipyridine, 2 μmol CoCl2, 1 mL TEOA, 3 mL MeCN, 2 mL H2O, | CO: 7368.7 | [ |
10 mg g-C3N4/Au/ZnIn2S4 | 300 W Xe lamp | 15 mg 2,2-bipyridine, 2 μmol CoCl2, 2 mL TEOA, 6 mL MeCN, 4 mL H2O | CO: 242.3 | [ |
50 mg PCN/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 892 | [ |
50 mg ZnIn2S4@CNO | 300 W Xe lamp (λ > 400 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 253.8; CH4: 23.6 | [ |
50 mg CuInS2/Au/g-C3N4 | 300 W Xe lamp (λ > 400 nm) | water vapor | CO: 2.43; CH4: 0.15 | [ |
0.1 g ZnIn2S4/N-doped graphene | 300 W Xe lamp | 10 mL H2O | CO: 2.45; CH4: 1.01; CH3OH: 1.37 | [ |
0.1 g CdIn2S4/mpg-C3N4 | 300 W Xe lamp (λ > 420 nm) | 100 mL aqueous solution, 0.1 mol L−1 NaOH | CH3OH: 42.7 | [ |
50 mg NH2-UiO-66/CdIn2S4 | 300 W Xe lamp AM 1.5 G filter | 100 mL H2O | CO: 11.24; CH4: 2.92 | [ |
Fig. 11. Evolutionary processes (a) and proposed photocatalytic CO2 reduction mechanism (b) for In2S3-CdIn2S4. Reprinted with permission from Ref. [139]. Copyright 2017, American Chemical Society. Evolutionary processes (c) and proposed photocatalytic CO2 reduction mechanism (d) for In2S3-CuInS2. Reprinted with permission from Ref. [105]. Copyright 2018, the Royal Society of Chemistry.
Fig. 12. Synthesis mechanism (a), HR-TEM image (b), photocatalytic CO2 reduction mechanism (c) and reaction activity (d) of ZnS/ZnIn2S4 heterostructure. Reprinted with permission from Ref. [140]. Copyright 2017, Elsevier.
Fig. 13. TEM image (a) and HRTEM image (b) of ZnIn2S4/TiO2. (c) Schematic illustration of the possible reaction processes of ZnIn2S4/TiO2 photocatalysts. Reprinted with permission from Ref. [131]. Copyright 2017, Elsevier. (d) Charge carrier schematic illustration; photocatalytic CO2 reduction activities (e) and stability (f) of TiO2/CuInS2. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier. (g,h) Calculated work function of WO3 QDs and CdIn2S4. (i) Schematic illustration of charge carrier in WO3 QDs/CdIn2S4 heterojunction. Reprinted with permission from Ref. [136]. Copyright 2020, Elsevier.
Fig. 14. (a) Synthesis mechanism of PCN/ZnIn2S4 layered heterojunction. Reprinted with permission from Ref. [142]. Copyright 2018, Wiley. Synthesis mechanism of T-CN/ZIS heterojunction (b) and SEM images of melamine-cyanuric acid precursor (c), T-CN (d) and T-CN/ZIS (e). Reprinted with permission from Ref. [147]. Copyright 2020, Elsevier.
Fig. 16. Synthesis mechanism (a) and electron transfer mechanism diagram (b) of CuInS2/C/TiO2 hierarchical tandem heterostructure. Reprinted with permission from Ref. [152]. Copyright 2022, Elsevier. (c) Scheme illustrating the photocatalytic CO2 reduction mechanism over the CeO2/ZnIn2S4 composite. Reprinted with permission from Ref. [41]. Copyright 2019, Elsevier.
Fig. 17. Contour plots of the femtosecond TA spectra of B-CN (a) and MCNM (b). (c) TA carrier dynamics of B-CN and MCNM recorded at 600 nm subtracted from the ground state bleach signal. Reprinted with permission from Ref. [160]. Copyright 2020, Elsevier.
Fig. 18. In situ FTIR spectra for co-adsorption of a mixture of CO2 and H2O vapour on the VS-CuIn5S8 single unit-cell layers (a) and the pristine CuIn5S8 single-unit-cell layers (b). Reprinted with permission from Ref. [36]. Copyright 2019, Nature. In situ FT-IR spectra of CO2 and H2O interaction withCu0.8Au0.2/TiO2 (c), Au/TiO2 (d), Cu/TiO2 (e), and TiO2 (f) under the dark and the simulated sunlight, respectively. The curves from bottom to top in the figure represent background, adsorption for 30 min, illumination for 2, 4, 8, 12, 24, and 30 min, respectively. Reprinted with permission from Ref. [12]. Copyright 2021, American Chemical Society.
Fig. 19. In situ Raman spectroscopy results at different current densities during CO2RR. Copper oxide region of the reconstructed Cu2P2O7 electrode (a) and CuO-800 electrode (c) (Raman shift between 400-700 cm-1). CO region of the reconstructed Cu2P2O7 electrode (b) and CuO-800 electrode (d) (Raman shift between 1600-2200 cm-1). Reprinted with permission from Ref. [165]. Copyright 2022, Wiley.
Fig. 20. The calculated models and density of states of CdIn2S4 (a,c) and Vs-CdIn2S4 (b,d). The pink, blue, and yellow atoms stand for S, In, Cd atoms and S vacancy, respectively. Reprinted with permission from Ref. [123]. Copyright 2020, Elsevier. The calculated models and charge difference distribution of interstitial C doped MgIn2S4 from top view (e,g) and side view (f,h). The green, brown, yellow and black atoms stand for Mg, In, S and C atoms, respectively. Reprinted with permission from Ref. [166]. Copyright 2021, Elsevier.
Fig. 21. Calculated work function of monolayer PCN (a), CIS (112) surface (b) and monolayer CIS/Au/PCN heterostructure (c). (d) The diagram of the band edge positions before and after contact of CIS/Au/PCN heterostructure. Reprinted with permission from Ref. [143]. Copyright 2019, Wiley.
Fig. 22. Free energy diagrams of CO2 photoreduction to CH4 for the VS-CuIn5S8 single-unit-cell layers (a) and the pristine CuIn5S8 single-unit-cell layers (b). Reprinted with permission from Ref. [36]. Copyright 2019, Nature.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[4] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[7] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[8] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[9] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[10] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[11] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[12] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[13] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[14] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[15] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||