Chinese Journal of Catalysis ›› 2023, Vol. 55: 20-43.DOI: 10.1016/S1872-2067(23)64553-X
• Reviews • Previous Articles Next Articles
Yang Suna, Jan E. Szulejkoa, Ki-Hyun Kima,*(), Vanish Kumarb,*(
), Xiaowei Lic,*(
)
Received:
2023-08-13
Accepted:
2023-10-11
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Prof. Ki-Hyun Kim was at Florida State University for an M.S. (1984‒1986) and at University of South Florida for a Ph.D. (1988‒1992). He was a Research Associate at Oak Ridge National Laboratory, USA (1992 to 1994). He moved to Sang Ji University, Korea in 1995 and then joined Sejong University in 1999. In 2014, he moved to the Department of Civil & Environmental Engineering at Hanyang University. His research areas cover the various aspects of research to incorporate “Air Quality & Environmental Engineering” into “Material Engineering” with emphasis on Metal-Organic Frameworks (MOFs). He was awarded as one of the top 10 National Star Faculties in Korea in 2006 and became an academician (Korean Academy of Science and Technology) in 2018. He has been recognized as ‘Highly Cited Researcher (HCR)’ in dual fields of ‘Environment & Ecology’ and ‘Engineering’ from Clarivate Analytics. He is serving as associate editor of ‘Environmental Research’, Sensors’, and ‘Critical Reviews in Environmental Science & Technology’. He has published more than 980 articles, many of which are in leading scientific journals including Chemical Society Reviews, Progress in Material Science, Progress in Energy and Combustion Science, Chem, Nano Energy, Coordination Chemistry Reviews, Applied Catalysis B, and Chemical Engineering Journal.Yang Sun, Jan E. Szulejko, Ki-Hyun Kim, Vanish Kumar, Xiaowei Li. Recent advances in the development of bismuth-based materials for the photocatalytic reduction of hexavalent chromium in water[J]. Chinese Journal of Catalysis, 2023, 55: 20-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64553-X
Order | Year | Cr(VI) reduction/removal method | Material | Performance evaluation | Advantage | Disadvantage | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2010 | adsorption | lignocellulosic materials | Pith (Q = 262.89 mg g‒1) | simply operation Low cost | rapid saturation | [ | |||
2 | 2012 | electrocoagulation | Iron/Aluminum electrodes | — | simplicity of operation | high energy consumption loss of electrodes | [ | |||
photocatalytic reduction | organic matter | — | cost-effective environmental-friendly | unwanted byproducts | ||||||
Fe(III) photocatalysts + organic acids | ||||||||||
TiO2 photocatalysts + organic acid | ||||||||||
Cr(VI) reduction bacteria | aerobic Cr(VI) reducing bacteria | — | economical operation | long period for Cr(VI) treatment | ||||||
anaerobic Cr(VI) reducing bacteria | ||||||||||
fungi | ||||||||||
3 | 2016 | electrochemical method | carbon-based electrodes gold electrodes conducting polymers | — | high energy efficiency and rapid treatment | pH dependence anode passivation and sludge deposition on the electrodes | [ | |||
4 | 2016 | photocatalytic Cr(VI) reduction | MOFs semiconductor/MOFs hybrid photocatalyst conductor/MOFs hybrid photocatalyst | — | in situ production of reactive radicals less consumption of chemicals flexible modulation of MOFs | expensive cost for MOFs preparation potential MOFs structure collapse | [ | |||
5 | 2018 | biological methods | bacteria/fungi/algae/plants | — | eco-friendly and cost-effective | preparation of favorable environment; slow process | [ | |||
6 | 2019 | catalytic methods | catalysts + carboxylic acids (Cas) | — | fast kinetic; rapid operation ubiquitous presence of Cas in natural environments and effluents | possible generation of uncertain by-products hard to be employed | [ | |||
7 | 2019 | adsorption | activated carbon, Zero valent iron | — | cheap production | low affinity elimination of adsorbents | [ | |||
voagulation | FeCl3, FeSO4, Al2(SO4)3 | — | high performance | low efficiency additional consumption secondary pollutants | ||||||
electrochemical method | — | — | cost-effective rapid treatment | high energy consumption | ||||||
ion exchange | — | — | simple process and technology easy to be used with other techniques | highly dependent with pH low binding affinity due to the presence of free acids | ||||||
membrane separation | polyamide membranes | — | small required space high quality treated effluent low solid waste generation | generation of residual sludge amount, expensive energy use | ||||||
biological methods | — | — | eco-friendly cheap | biological sludge generation microorganisms management and maintenance | ||||||
fenton reaction | Fe + H2O2 | — | fast reaction | extra chemicals | ||||||
photocatalysis | — | — | green technology | uncertain byproducts | ||||||
8 | 2019 | bioremediation technology | biochar | chattim tree saw dust (Q = 333.33 mg g‒1) | high performance | tedious post treatments expensiveness of regeneration and material loss | [ | |||
microorganisms | — | low cost small risk of secondary pollution | long term | |||||||
plants | — | |||||||||
9 | 2020 | photocatalytic approach | photocatalysts | — | high efficiency low energy consumption | laboratory scale low throughput | [ | |||
10 | 2021 | bacterial reduction | bacteria | — | cost-effective | pH control and environmental maintenance | [ | |||
11 | 2021 | adsorption/ photocatalytic reduction | graphene-based materials | — | large surface area | material regeneration | [ | |||
12 | 2021 | photocatalytic technology | graphitic carbon nitride (g-C3N4) | — | solar energy utilization low cost | low efficiency | [ | |||
13 | 2021 | adsorption | carbon-based adsorbents | bermuda grass (Q = 403.2 mg g‒1) | simple operation High pH range | rapid saturation adsorbents collection and regeneration | [ | |||
membrane technology | filtration/osmosis | — | small space easy operation | high maintenance fee | ||||||
photocatalysis | TiO2 | — | rapid reduction | high electron/hole recombination rate | ||||||
electrochemical treatment | — | — | high energy efficiency | corrosion of electrode | ||||||
microbial treatment | — | — | simple operation economical operation | long period environment maintenance | ||||||
14 | 2021 | adsorption/ photocatalytic reduction | MOFs | — | flexible designing of MOFs | high cost | [ | |||
15 | 2021 | adsorption/ photocatalytic reduction | polysaccharide-based materials | — | biodegradability and biocompatibility | material preparation | [ | |||
16 | 2021 | electrochemical reduction method | — | — | versatility | anode passivation | [ | |||
17 | 2022 | photocatalytic method | photocatalysts | — | no sludge production | pH dependence | [ | |||
18 | 2022 | photo-reduction method | MOF-based photocatalyst | — | unique versatilities facile structural modulation | expensive | [ | |||
19 | 2022 | microbial immobilization technology | — | — | eco-friendly | complexity of the operation | [ | |||
20 | 2022 | adsorption | surface-modified silicas | silica modified with 1-methyl-3-(triethoxysilypropyl) imidazolium chloride (Q = 428 mg g‒1) | high performance | regeneration | [ | |||
21 | 2022 | photocatalytic method | MOFs-based photocatalysts | — | wide range of MOFs | laboratory scale | [ | |||
22 | 2022 | photocatalytic method | semiconductor heterojunctions | — | large amount of candidates | energy utilization efficiency | [ | |||
23 | 2023 | photocatalytic reduction | Bi-based photocatalysts | BiVO4 FoM = 3.45 × 10‒5 mol g‒1 Wh‒1 | abundance adjustable optical property high efficiency environment harmless | laboratory scale lack of cost/energy evaluation | this work |
Table 1 Comparison of advantages and disadvantages of various technologies for Cr removal from aquatic environments.
Order | Year | Cr(VI) reduction/removal method | Material | Performance evaluation | Advantage | Disadvantage | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2010 | adsorption | lignocellulosic materials | Pith (Q = 262.89 mg g‒1) | simply operation Low cost | rapid saturation | [ | |||
2 | 2012 | electrocoagulation | Iron/Aluminum electrodes | — | simplicity of operation | high energy consumption loss of electrodes | [ | |||
photocatalytic reduction | organic matter | — | cost-effective environmental-friendly | unwanted byproducts | ||||||
Fe(III) photocatalysts + organic acids | ||||||||||
TiO2 photocatalysts + organic acid | ||||||||||
Cr(VI) reduction bacteria | aerobic Cr(VI) reducing bacteria | — | economical operation | long period for Cr(VI) treatment | ||||||
anaerobic Cr(VI) reducing bacteria | ||||||||||
fungi | ||||||||||
3 | 2016 | electrochemical method | carbon-based electrodes gold electrodes conducting polymers | — | high energy efficiency and rapid treatment | pH dependence anode passivation and sludge deposition on the electrodes | [ | |||
4 | 2016 | photocatalytic Cr(VI) reduction | MOFs semiconductor/MOFs hybrid photocatalyst conductor/MOFs hybrid photocatalyst | — | in situ production of reactive radicals less consumption of chemicals flexible modulation of MOFs | expensive cost for MOFs preparation potential MOFs structure collapse | [ | |||
5 | 2018 | biological methods | bacteria/fungi/algae/plants | — | eco-friendly and cost-effective | preparation of favorable environment; slow process | [ | |||
6 | 2019 | catalytic methods | catalysts + carboxylic acids (Cas) | — | fast kinetic; rapid operation ubiquitous presence of Cas in natural environments and effluents | possible generation of uncertain by-products hard to be employed | [ | |||
7 | 2019 | adsorption | activated carbon, Zero valent iron | — | cheap production | low affinity elimination of adsorbents | [ | |||
voagulation | FeCl3, FeSO4, Al2(SO4)3 | — | high performance | low efficiency additional consumption secondary pollutants | ||||||
electrochemical method | — | — | cost-effective rapid treatment | high energy consumption | ||||||
ion exchange | — | — | simple process and technology easy to be used with other techniques | highly dependent with pH low binding affinity due to the presence of free acids | ||||||
membrane separation | polyamide membranes | — | small required space high quality treated effluent low solid waste generation | generation of residual sludge amount, expensive energy use | ||||||
biological methods | — | — | eco-friendly cheap | biological sludge generation microorganisms management and maintenance | ||||||
fenton reaction | Fe + H2O2 | — | fast reaction | extra chemicals | ||||||
photocatalysis | — | — | green technology | uncertain byproducts | ||||||
8 | 2019 | bioremediation technology | biochar | chattim tree saw dust (Q = 333.33 mg g‒1) | high performance | tedious post treatments expensiveness of regeneration and material loss | [ | |||
microorganisms | — | low cost small risk of secondary pollution | long term | |||||||
plants | — | |||||||||
9 | 2020 | photocatalytic approach | photocatalysts | — | high efficiency low energy consumption | laboratory scale low throughput | [ | |||
10 | 2021 | bacterial reduction | bacteria | — | cost-effective | pH control and environmental maintenance | [ | |||
11 | 2021 | adsorption/ photocatalytic reduction | graphene-based materials | — | large surface area | material regeneration | [ | |||
12 | 2021 | photocatalytic technology | graphitic carbon nitride (g-C3N4) | — | solar energy utilization low cost | low efficiency | [ | |||
13 | 2021 | adsorption | carbon-based adsorbents | bermuda grass (Q = 403.2 mg g‒1) | simple operation High pH range | rapid saturation adsorbents collection and regeneration | [ | |||
membrane technology | filtration/osmosis | — | small space easy operation | high maintenance fee | ||||||
photocatalysis | TiO2 | — | rapid reduction | high electron/hole recombination rate | ||||||
electrochemical treatment | — | — | high energy efficiency | corrosion of electrode | ||||||
microbial treatment | — | — | simple operation economical operation | long period environment maintenance | ||||||
14 | 2021 | adsorption/ photocatalytic reduction | MOFs | — | flexible designing of MOFs | high cost | [ | |||
15 | 2021 | adsorption/ photocatalytic reduction | polysaccharide-based materials | — | biodegradability and biocompatibility | material preparation | [ | |||
16 | 2021 | electrochemical reduction method | — | — | versatility | anode passivation | [ | |||
17 | 2022 | photocatalytic method | photocatalysts | — | no sludge production | pH dependence | [ | |||
18 | 2022 | photo-reduction method | MOF-based photocatalyst | — | unique versatilities facile structural modulation | expensive | [ | |||
19 | 2022 | microbial immobilization technology | — | — | eco-friendly | complexity of the operation | [ | |||
20 | 2022 | adsorption | surface-modified silicas | silica modified with 1-methyl-3-(triethoxysilypropyl) imidazolium chloride (Q = 428 mg g‒1) | high performance | regeneration | [ | |||
21 | 2022 | photocatalytic method | MOFs-based photocatalysts | — | wide range of MOFs | laboratory scale | [ | |||
22 | 2022 | photocatalytic method | semiconductor heterojunctions | — | large amount of candidates | energy utilization efficiency | [ | |||
23 | 2023 | photocatalytic reduction | Bi-based photocatalysts | BiVO4 FoM = 3.45 × 10‒5 mol g‒1 Wh‒1 | abundance adjustable optical property high efficiency environment harmless | laboratory scale lack of cost/energy evaluation | this work |
Order | Bi-based material | Example | Crystal structure | Morphology | surface area (m2 g‒1) | UV/visible light response ability | Bandgap energy (Eg, eV) | Estimated light absorption edge (nm) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Bismuth sulfide | Bi2S3 | orthorhombic | ![]() | 31.9 | visible light near infrared | 1.3 | ~953 | [ |
2 | Bismuth oxides | Bi2O3 | monoclinic tetragonal body-centered cubic | ![]() | 1.91 | UV/visible light | 2.26‒2.95 | ~420‒548 | [ |
3 | Bismuth oxyhalides | BiOCl | tetragonal | ![]() | 18.06 | UV | 3.3 | ~375 | [ |
4 | BiOBr | tetragonal | ![]() | 76.38 | UV/visible light | 2.64 | ~469 | [ | |
5 | BiOI | tetragonal | ![]() | 52.76 | visible light | 1.77 | ~700 | [ | |
6 | Bi-based multicomponent oxides | Bi2WO6 | orthorhombic | ![]() | 59.46 | UV/visible light | 2.91 | ~426 | [ |
7 | Bi2MoO6 | orthorhombic | ![]() | 18.75 | UV/visible light | 2.62 | ~473 | [ | |
8 | BiVO4 | monoclinic tetragonal octahedral | ![]() | 115 | UV/visible light | 2.4 | ~516 | [ | |
9 | Bi4Ti3O12 | — | ![]() | 15 | UV | 3.29 | ~376 | [ | |
10 | Bi-based metal organic frameworks | IEF-5 | monoclinic | ![]() | 30 | UV/visible light | 2.4 | ~516 | [ |
11 | CAU-7 | monoclinic | ![]() | 104 | UV | 3.47 | ~357 | [56,59] | |
12 | CAU-17 | — | ![]() | 93.15 | UV | 3.77 | ~328 | [ | |
13 | SU-100 | monoclinic | ![]() | 395 | — | — | — | [ |
Table 2 Comparison of morphology and optical properties for different Bi-based materials.
Order | Bi-based material | Example | Crystal structure | Morphology | surface area (m2 g‒1) | UV/visible light response ability | Bandgap energy (Eg, eV) | Estimated light absorption edge (nm) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Bismuth sulfide | Bi2S3 | orthorhombic | ![]() | 31.9 | visible light near infrared | 1.3 | ~953 | [ |
2 | Bismuth oxides | Bi2O3 | monoclinic tetragonal body-centered cubic | ![]() | 1.91 | UV/visible light | 2.26‒2.95 | ~420‒548 | [ |
3 | Bismuth oxyhalides | BiOCl | tetragonal | ![]() | 18.06 | UV | 3.3 | ~375 | [ |
4 | BiOBr | tetragonal | ![]() | 76.38 | UV/visible light | 2.64 | ~469 | [ | |
5 | BiOI | tetragonal | ![]() | 52.76 | visible light | 1.77 | ~700 | [ | |
6 | Bi-based multicomponent oxides | Bi2WO6 | orthorhombic | ![]() | 59.46 | UV/visible light | 2.91 | ~426 | [ |
7 | Bi2MoO6 | orthorhombic | ![]() | 18.75 | UV/visible light | 2.62 | ~473 | [ | |
8 | BiVO4 | monoclinic tetragonal octahedral | ![]() | 115 | UV/visible light | 2.4 | ~516 | [ | |
9 | Bi4Ti3O12 | — | ![]() | 15 | UV | 3.29 | ~376 | [ | |
10 | Bi-based metal organic frameworks | IEF-5 | monoclinic | ![]() | 30 | UV/visible light | 2.4 | ~516 | [ |
11 | CAU-7 | monoclinic | ![]() | 104 | UV | 3.47 | ~357 | [56,59] | |
12 | CAU-17 | — | ![]() | 93.15 | UV | 3.77 | ~328 | [ | |
13 | SU-100 | monoclinic | ![]() | 395 | — | — | — | [ |
Fig. 2. The predicted chemical speciation of Cr(VI) at different pH values. Ionic strength 0.1 mol L?1 and [Cr(VI)] = 0.57 mmol L?1. Reprinted with the permission from Ref. [63]. Copyright 2016, Royal Society of Chemistry.
Fig. 3. The effect of experimental parameters on photocatalytic Cr(VI) removal in CF/C3N4/Bi2MoO6 system: catalyst (a), pH (b), co-existing ions (c), and water source (d). Reprinted from Ref. [81]. Copyright 2022, Elsevier B.V.
Order | Photocatalyst | Synthesis method | Modification strategy | Light source | Power of light source (W) | Conc. (g L-1) | Solution vol. (mL) | Time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I. Heterojunction construction | |||||||||||||
1 | Cd0.5Zn0.5S/ Bi2WO6 | hydrothermal method calcination | S-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.2 | 100 | 20 | 20 | 95.80 | 0.1593 | 1.84E-05 | [ |
2 | Bi2O2CO3/RP | hydrothermal method | S-scheme heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 40 | 99.20 | 0.22 | 1.53E-05 | [ |
3 | BiO2-x/BiOCl | solvothermal method | type-I heterojunction | LED | 35 | 0.5 | 40 | 120 | 20 | 87 | 0.02994 | 9.56E-06 | [ |
4 | BixOy/CdS | solvothermal method | heterojunction | Xe lamp | 350 | 0.6 | 50 | 30 | 41.6 | 100 | 0.1265 | 7.62E-06 | [ |
5 | BiVO4@Bi2S3 | hydrothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 350 | 0.7 | 50 | 40 | 50 | 100 | 0.071 | 5.89E-06 | [ |
6 | Bi2O3/HRP | hydrothermal method | heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 14 | 100 | 0.11775 | 5.38E-06 | [ |
7 | BiOCl coated UiO-66-NH2 | oil bath precipitation method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 20 | 8 | 100 | 0.233 | 3.08E-06 | [ |
8 | Bi2S3/BiOCl @ZnIn2S4 | oil bath | heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 40 | 60 | 50 | 85 | 0.0293 | 2.72E-06 | [ |
9 | Bi2S3@NH2- MIL-125(Ti) | solvothermal method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.1 | N.A. | 120 | 10 | 77 | 0.01134 | 2.47E-06 | [ |
10 | TCPP/GQDs/ Bi2MoO6 | solvothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.25 | 80 | 60 | 10 | 90.70 | 0.0364 | 2.33E-06 | [ |
11 | BiOBr/g-C3N4 | in situ deposition method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.4 | 120 | 50 | 10 | ~90 | — | 1.73E-06 | [ |
12 | AgI/Bi24O31Cl10 | in situ precipitation method | Z-scheme heterojunction | Xe lamp | 300 | 0.3 | 100 | 60 | 10 | 78.26 | 0.0236 | 1.67E-06 | [ |
13 | BiVO4/Bi2S3 | solvothermal method | type-II heterojunction | Xe lamp | 300 | 1.0 | 300 | 150 | 50 | 100 | — | 1.28E-06 | [ |
14 | MIL-125-NH2 @BiOI | solvothermal method | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.0 | 40 | 120 | 40 | 100 | — | 1.28E-06 | [ |
15 | Bi2O3 QDs/g-C3N4 | wet impregnation manual grinding | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 100 | 60 | 10 | 87.90 | 0.0335 | 1.13E-06 | [ |
16 | Bi2S3/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 180 | 50 | 100 | — | 1.07E-06 | [ |
17 | BUC-21/ Bi24O31Br10 | hydrothermal method | heterojunction | Xe lamp | 500 | 0.25 | 200 | 120 | 10 | 99.90 | 0.06287 | 7.68E-07 | [ |
18 | Bi2MoO6/CeO2 | solvothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 300 | 0.6 | 50 | 90 | 10 | 98.40 | — | 7.01E-07 | [ |
19 | Bi2S3@CdS @rGO | hydrothermal method | S scheme heterojunction | Xe lamp 800 nm > λ > 420 nm | 300 | 0.6 | 50 | 150 | 20 | 81.51 | 0.0155 | 6.97E-07 | [ |
20 | Bi12O17Cl2/ MIL-100(Fe) | solvothermal method | type-II heterojunction | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | ~100 | 0.00483 | 6.41E-07 | [ |
21 | MIL-53(Fe)/ Bi12O17Cl2 | solvothermal method | Z-scheme heterojunction | Xe lamp | 500 | 0.5 | 100 | 90 | 10 | 99.20 | 0.0284 | 5.09E-07 | [ |
22 | ZnO-Ag-BiVO4 | hydrothermal method | Z-scheme heterojunction | tungsten lamp λ > 400 nm | 150 | 0.4 | 100 | 70 | 1.7 | 97 | 0.0371 | 4.53E-07 | [ |
23 | Bi3NbO7/BiOCl | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 400 nm | 300 | 0.5 | 50 | 40 | 1.7 | 94 | 0.0864 | 3.07E-07 | [ |
24 | KmoP@CdS @Bi2S3 | hydrothermal method | Z-scheme heterojunction | Xe lamp 780 nm > λ > 420 nm | 300 | 1.0 | 30 | 120 | 10 | 95.50 | — | 3.06E-07 | [ |
25 | Bi4Ti3O12/ Bi2Ti2O7 | calcination | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.5 | 100 | 120 | 0.7 | 39 | 0.0034 | 6.02E-09 | [ |
26 | Ag/AgBr/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | N.A. | 60 | 60 | 10 | 91.72 | 0.0405 | N.A. | [ |
average FoM value | 3.41E-06 | ||||||||||||
II. Defect engineering | |||||||||||||
1 | BiSI | solvothermal/ hydrothermal method | O doping sulfur vacancy | Xe lamp | 300 | 1.0 | 50 | 30 | 20 | ~100 | 0.191 | 2.56E-06 | [ |
2 | Bi4O5Br2/Bi2S3 | hydrothermal method | Z-scheme heterojunction oxygen vacancy | Xe lamp | 500 | 0.4 | 800 | 80 | 20 | 91.30 | 0.02363 | 1.32E-06 | [ |
3 | Bi3.25La0.75Ti3O12-x | hydrothermal method | oxygen vacancy La doping | Xe lamp λ > 420 nm | 300 | 0.4 | 100 | 200 | 20 | 95.10 | 9.14E-07 | [ | |
4 | N-SSC/Bi2WO6 | hydrothermal method | oxygen vacancy | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 10 | 28 | 0.0031 | 8.97E-08 | [ |
5 | Bi.33(Bi6S9) Br/Bi2S3 | hydrothermal method | Z-scheme heterojunction sulfur defect | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 60 | N.A. | 94.40 | 0.0488 | N.A. | [ |
III. Element doping | |||||||||||||
1 | Ca-doped BiFeO3 | combustion method | Ca doping | Xe lamp | 35 | 0.4 | 50 | 210 | 17.5 | 89.92 | 0.00364 | 6.18E-06 | [ |
2 | In-doped Bi2MoO6 | hydrothermal- calcination process | In doping | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 30 | 20 | 98 | 0.0626 | 5.03E-06 | [ |
3 | Sn-doped BiOBr | hydrothermal method | Sn doping | Xe lamp | 300 | 0.4 | 50 | 60 | 15 | ~90 | 0.33316 | 2.16E-06 | [ |
4 | Cl-doped Bi2S3 | hydrothermal method | Cl doping | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 100 | 10 | 96.60 | 0.0357 | 1.86E-06 | [ |
5 | Bi2S3/Ag | hydrothermal method | Ag doping | Xe lamp 700 nm > λ > 400 nm | 300 | 0.5 | 100 | 75 | 10 | 97.00 | 0.0455 | 9.95E-07 | [ |
6 | I-BiOBr/ Bi12GeO20 | water bath method | Z-scheme heterojunction I doping | Xe lamp λ > 420 nm | 250 | 0.5 | 100 | 60 | 10 | ~60 | 0.0113 | 9.23E-07 | [ |
7 | CrO42- intercalated BiOBr | hydrothermal method | CrO42- doping | Xe lamp λ > 420 nm | 500 | 0.4 | 50 | 120 | 10 | 100 | — | 4.81E-07 | [ |
8 | Na2WO4BiBDC | hydrothermal method | WO42- doping | Xe lamp λ > 365 nm | 350 | 1.0 | 50 | 180 | 20 | 70 | 0.006 | 2.56E-07 | [ |
average FoM value | 2.23E-06 | ||||||||||||
IV. Others | |||||||||||||
1 | BiVO4 | solvothermal method | — | Xe lamp | 35 | 0.2 | 50 | 160 | 35 | 95.09 | 0.01626 | 3.43E-05 | [ |
2 | CaBiO3 | calcination | — | 1200 nm > λ > 300 nm | 150 | 0.9 | 100 | 120 | 364 | 94 | 0.0147 | 2.44E-05 | [ |
3 | Bi2MoO6/Ti3C2 Mxene | hydrothermal method | — | LED λ > 400 nm | 50 | 0.5 | 20 | 60 | 15 | 100 | — | 1.15E-05 | [ |
4 | BiOCl | hydrolytic process | — | mercury lamp | 150 | 0.2 | N.A. | 120 | 20 | ~100 | 0.1076 1 | 6.41E-06 | [ |
5 | Bi4O5I2 nanosheets | hydrolysis solvothermal approach | — | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 60 | 90 | — | 1.73E-06 | [ |
6 | BiOBr/CCNF | calcination hydrothermal method | — | LED | 200 | 0.5 | 100 | 90 | 10 | ~70 | 0.21 mmol g-1 h-1 | 8.97E-07 | [ |
7 | Bi2O2CO3 | hydrothermal method | — | Xe lamp | 300 | 0.5 | 100 | 30 | 3.5 | 97.90 | 0.6875 | 8.79E-07 | [ |
8 | Bi2Fe4O9 | calcination | — | tungsten lamp | 200 | 1.5 | 100 | 180 | 25 | 97 | — | 5.18E-07 | [ |
9 | BC/Bi/Fe3O4 | calcination approach | — | Xe lamp λ > 400 nm | 300 | 1.0 | 200 | 180 | 20 | 95 | 0.0114 | 4.06E-07 | [ |
10 | Bi2MoO6 | hydrothermal method | — | Xe lamp λ > 400 nm | 300 | 0.6 | 50 | 120 | 3.5 | ~95 | 0.024 | 1.78E-07 | [ |
11 | CoFe2O4/BiOCl | solvothermal method | — | Xe lamp | 300 | 1.0 | 10 | 120 | N.A. | 78 | — | N.A. | [ |
Table 3 Performance evaluation of Bi-based catalysts in photocatalytic reduction of Cr(VI).
Order | Photocatalyst | Synthesis method | Modification strategy | Light source | Power of light source (W) | Conc. (g L-1) | Solution vol. (mL) | Time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I. Heterojunction construction | |||||||||||||
1 | Cd0.5Zn0.5S/ Bi2WO6 | hydrothermal method calcination | S-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.2 | 100 | 20 | 20 | 95.80 | 0.1593 | 1.84E-05 | [ |
2 | Bi2O2CO3/RP | hydrothermal method | S-scheme heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 40 | 99.20 | 0.22 | 1.53E-05 | [ |
3 | BiO2-x/BiOCl | solvothermal method | type-I heterojunction | LED | 35 | 0.5 | 40 | 120 | 20 | 87 | 0.02994 | 9.56E-06 | [ |
4 | BixOy/CdS | solvothermal method | heterojunction | Xe lamp | 350 | 0.6 | 50 | 30 | 41.6 | 100 | 0.1265 | 7.62E-06 | [ |
5 | BiVO4@Bi2S3 | hydrothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 350 | 0.7 | 50 | 40 | 50 | 100 | 0.071 | 5.89E-06 | [ |
6 | Bi2O3/HRP | hydrothermal method | heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 14 | 100 | 0.11775 | 5.38E-06 | [ |
7 | BiOCl coated UiO-66-NH2 | oil bath precipitation method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 20 | 8 | 100 | 0.233 | 3.08E-06 | [ |
8 | Bi2S3/BiOCl @ZnIn2S4 | oil bath | heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 40 | 60 | 50 | 85 | 0.0293 | 2.72E-06 | [ |
9 | Bi2S3@NH2- MIL-125(Ti) | solvothermal method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.1 | N.A. | 120 | 10 | 77 | 0.01134 | 2.47E-06 | [ |
10 | TCPP/GQDs/ Bi2MoO6 | solvothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.25 | 80 | 60 | 10 | 90.70 | 0.0364 | 2.33E-06 | [ |
11 | BiOBr/g-C3N4 | in situ deposition method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.4 | 120 | 50 | 10 | ~90 | — | 1.73E-06 | [ |
12 | AgI/Bi24O31Cl10 | in situ precipitation method | Z-scheme heterojunction | Xe lamp | 300 | 0.3 | 100 | 60 | 10 | 78.26 | 0.0236 | 1.67E-06 | [ |
13 | BiVO4/Bi2S3 | solvothermal method | type-II heterojunction | Xe lamp | 300 | 1.0 | 300 | 150 | 50 | 100 | — | 1.28E-06 | [ |
14 | MIL-125-NH2 @BiOI | solvothermal method | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.0 | 40 | 120 | 40 | 100 | — | 1.28E-06 | [ |
15 | Bi2O3 QDs/g-C3N4 | wet impregnation manual grinding | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 100 | 60 | 10 | 87.90 | 0.0335 | 1.13E-06 | [ |
16 | Bi2S3/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 180 | 50 | 100 | — | 1.07E-06 | [ |
17 | BUC-21/ Bi24O31Br10 | hydrothermal method | heterojunction | Xe lamp | 500 | 0.25 | 200 | 120 | 10 | 99.90 | 0.06287 | 7.68E-07 | [ |
18 | Bi2MoO6/CeO2 | solvothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 300 | 0.6 | 50 | 90 | 10 | 98.40 | — | 7.01E-07 | [ |
19 | Bi2S3@CdS @rGO | hydrothermal method | S scheme heterojunction | Xe lamp 800 nm > λ > 420 nm | 300 | 0.6 | 50 | 150 | 20 | 81.51 | 0.0155 | 6.97E-07 | [ |
20 | Bi12O17Cl2/ MIL-100(Fe) | solvothermal method | type-II heterojunction | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | ~100 | 0.00483 | 6.41E-07 | [ |
21 | MIL-53(Fe)/ Bi12O17Cl2 | solvothermal method | Z-scheme heterojunction | Xe lamp | 500 | 0.5 | 100 | 90 | 10 | 99.20 | 0.0284 | 5.09E-07 | [ |
22 | ZnO-Ag-BiVO4 | hydrothermal method | Z-scheme heterojunction | tungsten lamp λ > 400 nm | 150 | 0.4 | 100 | 70 | 1.7 | 97 | 0.0371 | 4.53E-07 | [ |
23 | Bi3NbO7/BiOCl | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 400 nm | 300 | 0.5 | 50 | 40 | 1.7 | 94 | 0.0864 | 3.07E-07 | [ |
24 | KmoP@CdS @Bi2S3 | hydrothermal method | Z-scheme heterojunction | Xe lamp 780 nm > λ > 420 nm | 300 | 1.0 | 30 | 120 | 10 | 95.50 | — | 3.06E-07 | [ |
25 | Bi4Ti3O12/ Bi2Ti2O7 | calcination | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.5 | 100 | 120 | 0.7 | 39 | 0.0034 | 6.02E-09 | [ |
26 | Ag/AgBr/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | N.A. | 60 | 60 | 10 | 91.72 | 0.0405 | N.A. | [ |
average FoM value | 3.41E-06 | ||||||||||||
II. Defect engineering | |||||||||||||
1 | BiSI | solvothermal/ hydrothermal method | O doping sulfur vacancy | Xe lamp | 300 | 1.0 | 50 | 30 | 20 | ~100 | 0.191 | 2.56E-06 | [ |
2 | Bi4O5Br2/Bi2S3 | hydrothermal method | Z-scheme heterojunction oxygen vacancy | Xe lamp | 500 | 0.4 | 800 | 80 | 20 | 91.30 | 0.02363 | 1.32E-06 | [ |
3 | Bi3.25La0.75Ti3O12-x | hydrothermal method | oxygen vacancy La doping | Xe lamp λ > 420 nm | 300 | 0.4 | 100 | 200 | 20 | 95.10 | 9.14E-07 | [ | |
4 | N-SSC/Bi2WO6 | hydrothermal method | oxygen vacancy | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 10 | 28 | 0.0031 | 8.97E-08 | [ |
5 | Bi.33(Bi6S9) Br/Bi2S3 | hydrothermal method | Z-scheme heterojunction sulfur defect | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 60 | N.A. | 94.40 | 0.0488 | N.A. | [ |
III. Element doping | |||||||||||||
1 | Ca-doped BiFeO3 | combustion method | Ca doping | Xe lamp | 35 | 0.4 | 50 | 210 | 17.5 | 89.92 | 0.00364 | 6.18E-06 | [ |
2 | In-doped Bi2MoO6 | hydrothermal- calcination process | In doping | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 30 | 20 | 98 | 0.0626 | 5.03E-06 | [ |
3 | Sn-doped BiOBr | hydrothermal method | Sn doping | Xe lamp | 300 | 0.4 | 50 | 60 | 15 | ~90 | 0.33316 | 2.16E-06 | [ |
4 | Cl-doped Bi2S3 | hydrothermal method | Cl doping | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 100 | 10 | 96.60 | 0.0357 | 1.86E-06 | [ |
5 | Bi2S3/Ag | hydrothermal method | Ag doping | Xe lamp 700 nm > λ > 400 nm | 300 | 0.5 | 100 | 75 | 10 | 97.00 | 0.0455 | 9.95E-07 | [ |
6 | I-BiOBr/ Bi12GeO20 | water bath method | Z-scheme heterojunction I doping | Xe lamp λ > 420 nm | 250 | 0.5 | 100 | 60 | 10 | ~60 | 0.0113 | 9.23E-07 | [ |
7 | CrO42- intercalated BiOBr | hydrothermal method | CrO42- doping | Xe lamp λ > 420 nm | 500 | 0.4 | 50 | 120 | 10 | 100 | — | 4.81E-07 | [ |
8 | Na2WO4BiBDC | hydrothermal method | WO42- doping | Xe lamp λ > 365 nm | 350 | 1.0 | 50 | 180 | 20 | 70 | 0.006 | 2.56E-07 | [ |
average FoM value | 2.23E-06 | ||||||||||||
IV. Others | |||||||||||||
1 | BiVO4 | solvothermal method | — | Xe lamp | 35 | 0.2 | 50 | 160 | 35 | 95.09 | 0.01626 | 3.43E-05 | [ |
2 | CaBiO3 | calcination | — | 1200 nm > λ > 300 nm | 150 | 0.9 | 100 | 120 | 364 | 94 | 0.0147 | 2.44E-05 | [ |
3 | Bi2MoO6/Ti3C2 Mxene | hydrothermal method | — | LED λ > 400 nm | 50 | 0.5 | 20 | 60 | 15 | 100 | — | 1.15E-05 | [ |
4 | BiOCl | hydrolytic process | — | mercury lamp | 150 | 0.2 | N.A. | 120 | 20 | ~100 | 0.1076 1 | 6.41E-06 | [ |
5 | Bi4O5I2 nanosheets | hydrolysis solvothermal approach | — | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 60 | 90 | — | 1.73E-06 | [ |
6 | BiOBr/CCNF | calcination hydrothermal method | — | LED | 200 | 0.5 | 100 | 90 | 10 | ~70 | 0.21 mmol g-1 h-1 | 8.97E-07 | [ |
7 | Bi2O2CO3 | hydrothermal method | — | Xe lamp | 300 | 0.5 | 100 | 30 | 3.5 | 97.90 | 0.6875 | 8.79E-07 | [ |
8 | Bi2Fe4O9 | calcination | — | tungsten lamp | 200 | 1.5 | 100 | 180 | 25 | 97 | — | 5.18E-07 | [ |
9 | BC/Bi/Fe3O4 | calcination approach | — | Xe lamp λ > 400 nm | 300 | 1.0 | 200 | 180 | 20 | 95 | 0.0114 | 4.06E-07 | [ |
10 | Bi2MoO6 | hydrothermal method | — | Xe lamp λ > 400 nm | 300 | 0.6 | 50 | 120 | 3.5 | ~95 | 0.024 | 1.78E-07 | [ |
11 | CoFe2O4/BiOCl | solvothermal method | — | Xe lamp | 300 | 1.0 | 10 | 120 | N.A. | 78 | — | N.A. | [ |
Fig. 4. Schematic of three types of heterojunction photocatalysts: type-I (a: Straddling gap), type-II (b: staggered gap), and type-III (c: broken gap). Reprinted from Ref. [113]. Copyright 2017, John Wiley & Sons. Inc.
Fig. 5. Photoelectric property comparison among MIL-125-NH2@BiOI composite (MNB-5), BiOI, and MIL-125-NH2: photocurrent (a) and impedance diagram (b). Reprinted from Ref. [114]. Copyright 2022, Elsevier B.V.
Fig. 6. Photocatalytic mechanism of TC degradation and Cr(VI) reduction over TCPP/G/BMO under visible light irradiation. Reprinted from Ref. [27]. Copyright 2022, Elsevier B.V.
Fig. 8. Photoelectric property comparison between Bi2S3 and Bi2S3/Ag nanostructures with varying weight ratios of Ag to Bi2S3: electrochemical impedance spectroscopy (a) and transient photocurrent spectrum (b). Reprinted from Ref. [32]. Copyright 2021 American Chemical Society.
Order | Photocatalyst | Light source | Power of light source (W) | Catalyst conc. (g L-1) | Solution vol. (mL) | Reaction time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
I. Noble metal-modified catalysts | |||||||||||
1 | Ag@TiO2 | mercury lamp | 300 | 0.01 | 50 | 60 | 20 | 99.80 | 0.0525 | 1.28E-04 | [ |
2 | MIL-53(Fe)/CQDs/AuNPs | Xe lamp | 300 | 0.5 | 40 | 30 | 20 | 100.00 | 0.18197 | 5.13E-06 | [ |
3 | Pt-UiO-66-NH2 | Xe lamp | 300 | 1.0 | 40 | 80 | 50 | ~70 | — | 1.68E-06 | [ |
4 | TiO2@Pt@CeO2 | Xe lamp | 300 | 0.3 | 100 | 160 | 5 | 99.00 | — | 3.97E-07 | [ |
II. MOF-based catalysts | |||||||||||
1 | JUL-MOF60 | Xe lamp | 300 | 0.4 | 25 | 70 | 160 | 98.00 | — | 2.15E-05 | [ |
2 | MIL-100(Fe)/g-C3N4 | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | 97.00 | 0.037 | 6.22E-07 | [ |
3 | Cd0.5Zn0.5S@ZIF-8 | Xe lamp | 300 | 1.0 | 40 | 30 | 20 | 100.00 | — | 2.56E-06 | [ |
4 | TiO2/MIL-125 | Xe lamp | 300 | 0.3 | 50 | 60 | 5 | 100.00 | 0.1059 | 1.07E-06 | [ |
III. Metal sulfide catalysts | |||||||||||
1 | N-CoSx | Xe lamp | 300 | 0.2 | 25 | 25 | 10 | 100.00 | 0.1662 | 7.69E-06 | [ |
2 | SnS2 with SVs | Xe lamp | 500 | 0.2 | 50 | 90 | 50 | 99.80 | 0.123 | 6.40E-06 | [ |
3 | CoSx/CdS | Xe lamp | 300 | 0.2 | 50 | 30 | 10 | 99.80 | 0.2202 | 6.40E-06 | [ |
4 | CaInS2-decorated WS2 | metal halogen lamp | 400 | 0.5 | 50 | 90 | 80 | 98.00 | 0.034 | 5.03E-06 | [ |
IV. g-C3N4-based catalysts | |||||||||||
1 | MgIn2S4/O-doped g-C3N4 | Xe lamp | 300 | 0.5 | 50 | 50 | 20 | 99.10 | 0.07605 | 3.05E-06 | [ |
2 | N-TiO2/O-doped N vacancy g-C3N4 | Xe lamp | 300 | 0.4 | 100 | 120 | 15 | 89.50 | 0.0178 | 1.08E-06 | [ |
3 | CoS2/g-C3N4-rGO | Xe lamp | 350 | 0.5 | 20 | 150 | 20 | 99.80 | 0.0179 | 8.77E-07 | [ |
4 | Br-doped g-C3N4 | Xe lamp | 300 | 1.0 | 50 | 120 | 20 | 61.60 | 0.00495 | 3.95E-07 | [ |
V. Other catalysts | |||||||||||
1 | Mxene/ZnIn2S4 | Xe lamp | 300 | 0.2 | 65 | 45 | 20 | 93.40 | 0.06343 | 1.04E-05 | [ |
2 | ZnO-Fe2O3 | Xe lamp | 300 | 0.4 | 100 | 60 | 20 | 87.50 | 0.05922 | 2.80E-06 | [ |
3 | GODs/TiO2 | Xe lamp | 300 | 0.4 | 50 | 60 | 40 | 22.00 | — | 1.41E-06 | [ |
4 | SnIn4S8/CeO2 | Xe lamp | 300 | 0.6 | 50 | 150 | 20 | 98.80 | 0.047 | 8.44E-07 | [ |
5 | CuS/TiO2 | metal halide lamp | 400 | 1.0 | 50 | 210 | 30 | 84.70 | — | 3.49E-07 | [ |
Table 4 Performance evaluation of non-Bi-based catalysts in photocatalytic reduction of Cr(VI).
Order | Photocatalyst | Light source | Power of light source (W) | Catalyst conc. (g L-1) | Solution vol. (mL) | Reaction time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
I. Noble metal-modified catalysts | |||||||||||
1 | Ag@TiO2 | mercury lamp | 300 | 0.01 | 50 | 60 | 20 | 99.80 | 0.0525 | 1.28E-04 | [ |
2 | MIL-53(Fe)/CQDs/AuNPs | Xe lamp | 300 | 0.5 | 40 | 30 | 20 | 100.00 | 0.18197 | 5.13E-06 | [ |
3 | Pt-UiO-66-NH2 | Xe lamp | 300 | 1.0 | 40 | 80 | 50 | ~70 | — | 1.68E-06 | [ |
4 | TiO2@Pt@CeO2 | Xe lamp | 300 | 0.3 | 100 | 160 | 5 | 99.00 | — | 3.97E-07 | [ |
II. MOF-based catalysts | |||||||||||
1 | JUL-MOF60 | Xe lamp | 300 | 0.4 | 25 | 70 | 160 | 98.00 | — | 2.15E-05 | [ |
2 | MIL-100(Fe)/g-C3N4 | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | 97.00 | 0.037 | 6.22E-07 | [ |
3 | Cd0.5Zn0.5S@ZIF-8 | Xe lamp | 300 | 1.0 | 40 | 30 | 20 | 100.00 | — | 2.56E-06 | [ |
4 | TiO2/MIL-125 | Xe lamp | 300 | 0.3 | 50 | 60 | 5 | 100.00 | 0.1059 | 1.07E-06 | [ |
III. Metal sulfide catalysts | |||||||||||
1 | N-CoSx | Xe lamp | 300 | 0.2 | 25 | 25 | 10 | 100.00 | 0.1662 | 7.69E-06 | [ |
2 | SnS2 with SVs | Xe lamp | 500 | 0.2 | 50 | 90 | 50 | 99.80 | 0.123 | 6.40E-06 | [ |
3 | CoSx/CdS | Xe lamp | 300 | 0.2 | 50 | 30 | 10 | 99.80 | 0.2202 | 6.40E-06 | [ |
4 | CaInS2-decorated WS2 | metal halogen lamp | 400 | 0.5 | 50 | 90 | 80 | 98.00 | 0.034 | 5.03E-06 | [ |
IV. g-C3N4-based catalysts | |||||||||||
1 | MgIn2S4/O-doped g-C3N4 | Xe lamp | 300 | 0.5 | 50 | 50 | 20 | 99.10 | 0.07605 | 3.05E-06 | [ |
2 | N-TiO2/O-doped N vacancy g-C3N4 | Xe lamp | 300 | 0.4 | 100 | 120 | 15 | 89.50 | 0.0178 | 1.08E-06 | [ |
3 | CoS2/g-C3N4-rGO | Xe lamp | 350 | 0.5 | 20 | 150 | 20 | 99.80 | 0.0179 | 8.77E-07 | [ |
4 | Br-doped g-C3N4 | Xe lamp | 300 | 1.0 | 50 | 120 | 20 | 61.60 | 0.00495 | 3.95E-07 | [ |
V. Other catalysts | |||||||||||
1 | Mxene/ZnIn2S4 | Xe lamp | 300 | 0.2 | 65 | 45 | 20 | 93.40 | 0.06343 | 1.04E-05 | [ |
2 | ZnO-Fe2O3 | Xe lamp | 300 | 0.4 | 100 | 60 | 20 | 87.50 | 0.05922 | 2.80E-06 | [ |
3 | GODs/TiO2 | Xe lamp | 300 | 0.4 | 50 | 60 | 40 | 22.00 | — | 1.41E-06 | [ |
4 | SnIn4S8/CeO2 | Xe lamp | 300 | 0.6 | 50 | 150 | 20 | 98.80 | 0.047 | 8.44E-07 | [ |
5 | CuS/TiO2 | metal halide lamp | 400 | 1.0 | 50 | 210 | 30 | 84.70 | — | 3.49E-07 | [ |
order | Aspect | Challenge | Future direction |
---|---|---|---|
1 | photocatalyst development | developing high efficient Bi-based photocatalysts for Cr(VI) reduction | attempting more modification strategies on Bi-based materials (e.g., microenvironment regulation) |
2 | expiration time of Bi-based photocatalysts | conducting long-term performance evaluation test for Bi-based materials to demonstrate expiration time development of detection technology to check the potential leakage of nano-metals or toxic metal ions | |
3 | objective assessment metrics | creating more objective and comprehension assessment metrics for the fair comparison of different photocatalysts comparing the best performer of Bi-based materials with other promising candidates to determine the most suitable photocatalysts | |
4 | photocatalytic Cr(VI) reduction system designing and application | complicated industrial wastewater composition | investigation of detailed parameters for treated Cr(VI) containing wastewater, including pH, composition, Cr(VI) concentration etc. |
5 | confined to lab-scale test | pilot-scale experiment of Bi-based photocatalytic Cr(VI) reduction system | |
6 | energy and cost estimation | lowering the cost of material preparation through massive production or find green and cost-effective synthesis method for the fabrication of Bi-based materials developing Bi-based photocatalysts with excellent optical property to reduce energy consumption by directly utilizing solar energy | |
7 | economical assessment | life cycle assessment to determine the total cost of Bi-based photocatalytic system, from material fabrication, application, and disposal. potential influence to the surrounding environment should be evaluated after the building of photocatalytic Cr(VI) reduction unit. |
Table 5 Current challenges and future perspectives for the development/application of Bi-based photocatalysts in the field of Cr(VI) reduction.
order | Aspect | Challenge | Future direction |
---|---|---|---|
1 | photocatalyst development | developing high efficient Bi-based photocatalysts for Cr(VI) reduction | attempting more modification strategies on Bi-based materials (e.g., microenvironment regulation) |
2 | expiration time of Bi-based photocatalysts | conducting long-term performance evaluation test for Bi-based materials to demonstrate expiration time development of detection technology to check the potential leakage of nano-metals or toxic metal ions | |
3 | objective assessment metrics | creating more objective and comprehension assessment metrics for the fair comparison of different photocatalysts comparing the best performer of Bi-based materials with other promising candidates to determine the most suitable photocatalysts | |
4 | photocatalytic Cr(VI) reduction system designing and application | complicated industrial wastewater composition | investigation of detailed parameters for treated Cr(VI) containing wastewater, including pH, composition, Cr(VI) concentration etc. |
5 | confined to lab-scale test | pilot-scale experiment of Bi-based photocatalytic Cr(VI) reduction system | |
6 | energy and cost estimation | lowering the cost of material preparation through massive production or find green and cost-effective synthesis method for the fabrication of Bi-based materials developing Bi-based photocatalysts with excellent optical property to reduce energy consumption by directly utilizing solar energy | |
7 | economical assessment | life cycle assessment to determine the total cost of Bi-based photocatalytic system, from material fabrication, application, and disposal. potential influence to the surrounding environment should be evaluated after the building of photocatalytic Cr(VI) reduction unit. |
|
[1] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[2] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[3] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[4] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[5] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[6] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
[7] | Zhuogen Li, Qadeer Ul Hassan, Weibin Zhang, Lujun Zhu, Jianzhi Gao, Xianjin Shi, Yu Huang, Peng Liu, Gangqiang Zhu. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3‒δ: Experimental and theoretical verification [J]. Chinese Journal of Catalysis, 2023, 46(3): 113-124. |
[8] | Yan Kong, Xingxing Jiang, Xuan Li, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Boosting electrocatalytic CO2 reduction to formate via carbon nanofiber encapsulated bismuth nanoparticles with ultrahigh mass activity [J]. Chinese Journal of Catalysis, 2023, 45(2): 95-106. |
[9] | Liqing Wu, Qing Liang, Jiayi Zhao, Juan Zhu, Hongnan Jia, Wei Zhang, Ping Cai, Wei Luo. A Bi-doped RuO2 catalyst for efficient and durable acidic water oxidation [J]. Chinese Journal of Catalysis, 2023, 55(12): 182-190. |
[10] | Ningning Wang, Shuo Wang, Can Li, Chenyang Li, Chunjiang Liu, Shanshan Chen, Fuxiang Zhang. ZrO2 modification of homogeneous nitrogen-doped oxide MgTa2O6-xNx for promoted photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2023, 54(11): 220-228. |
[11] | Weixu Liu, Chang He, Bowen Zhu, Enwei Zhu, Yaning Zhang, Yunning Chen, Junshan Li, Yongfa Zhu. Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight irradiation [J]. Chinese Journal of Catalysis, 2023, 53(10): 13-30. |
[12] | Yiming Lei, Jinhua Ye, Jordi García-Antón, Huimin Liu. Recent advances in the built-in electric-field-assisted photocatalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2023, 53(10): 72-101. |
[13] | Hui Yang, Kai Dai, Jinfeng Zhang, Graham Dawson. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications [J]. Chinese Journal of Catalysis, 2022, 43(8): 2111-2140. |
[14] | Yu-Lan Wu, Ming-Yu Qi, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites [J]. Chinese Journal of Catalysis, 2022, 43(7): 1851-1859. |
[15] | Fangshuai Chen, Chongbei Wu, Gengfeng Zheng, Liangti Qu, Qing Han. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects [J]. Chinese Journal of Catalysis, 2022, 43(5): 1216-1229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||