Chinese Journal of Catalysis ›› 2024, Vol. 61: 154-163.DOI: 10.1016/S1872-2067(24)60036-7
• Articles • Previous Articles Next Articles
Xuke Suna,b, Rongsheng Liua, Gaili Fana,c, Yuhan Liua,d, Fangxiu Yea,b, Zhengxi Yua,*(), Zhongmin Liua,b,*(
)
Received:
2024-03-05
Accepted:
2024-04-10
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: Supported by:
Xuke Sun, Rongsheng Liu, Gaili Fan, Yuhan Liu, Fangxiu Ye, Zhengxi Yu, Zhongmin Liu. Understanding the correlation between zinc speciation and coupling conversion of CO2 and n-butane on zinc/ZSM-5 catalysts[J]. Chinese Journal of Catalysis, 2024, 61: 154-163.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60036-7
Fig. 2. (a) UV-vis spectra of all samples. (b) XPS spectra of Zn 2p3/2 for the Zn-introduced samples. (c) The distributions and content of Zn species in the Zn-introduced samples with increasing Zn loading and provided data are determined from the combination of XPS and XRF. (d) 1H MAS NMR spectra with corresponding deconvolution results of all samples. FTIR (e) and Py-FTIR (f) spectra of all samples.
Sample | Zn by type | ||||
---|---|---|---|---|---|
Total a (wt%) | Znfr b (wt%) | ZnO b (wt%) | Znfr/ZnO b | ||
Zn3%-ZSM-5 | 3.12 | 1.93 | 1.19 | 1.62 | |
Zn5%-ZSM-5 | 5.10 | 2.75 | 2.35 | 1.17 | |
Zn7%-ZSM-5 | 6.92 | 2.91 | 4.01 | 0.73 |
Table 1 Zn species distribution of the Zn-introduced samples.
Sample | Zn by type | ||||
---|---|---|---|---|---|
Total a (wt%) | Znfr b (wt%) | ZnO b (wt%) | Znfr/ZnO b | ||
Zn3%-ZSM-5 | 3.12 | 1.93 | 1.19 | 1.62 | |
Zn5%-ZSM-5 | 5.10 | 2.75 | 2.35 | 1.17 | |
Zn7%-ZSM-5 | 6.92 | 2.91 | 4.01 | 0.73 |
Sample | OH concentration/mmol g‒1 | ||||
---|---|---|---|---|---|
Si-OH-Al(H-bond) | Si-OH-Al | Al-OH | Si-OH | Zn-OH | |
H-ZSM-5 | 1.21 | 0.71 | 0.62 | 0.41 | 0 |
Zn3%-ZSM-5 | 0.52 | 0.52 | 0.15 | 0.29 | 0.17 |
Zn5%-ZSM-5 | 0.25 | 0.36 | 0.14 | 0.25 | 0.19 |
Zn7%-ZSM-5 | 0.16 | 0.14 | 0.09 | 0.17 | 0.07 |
Table 2 OH species concentration of all samples.
Sample | OH concentration/mmol g‒1 | ||||
---|---|---|---|---|---|
Si-OH-Al(H-bond) | Si-OH-Al | Al-OH | Si-OH | Zn-OH | |
H-ZSM-5 | 1.21 | 0.71 | 0.62 | 0.41 | 0 |
Zn3%-ZSM-5 | 0.52 | 0.52 | 0.15 | 0.29 | 0.17 |
Zn5%-ZSM-5 | 0.25 | 0.36 | 0.14 | 0.25 | 0.19 |
Zn7%-ZSM-5 | 0.16 | 0.14 | 0.09 | 0.17 | 0.07 |
Sample | Acidity by strength a (mmol g‒1) | Acidity by type b (mmol g‒1) | |||||
---|---|---|---|---|---|---|---|
Strong | Weak | Total | Brønsted | Lewis | B/L | ||
H-ZSM-5 | 0.509 | 0.763 | 1.272 | 0.775 | 0.497 | 1.56 | |
Zn3%-ZSM-5 | 0.404 | 0.863 | 1.267 | 0.140 | 1.127 | 0.12 | |
Zn5%-ZSM-5 | 0.349 | 0.906 | 1.255 | 0.113 | 1.142 | 0.10 | |
Zn7%-ZSM-5 | 0.331 | 0.917 | 1.248 | 0.067 | 1.181 | 0.06 |
Table 3 Acidic properties of all samples.
Sample | Acidity by strength a (mmol g‒1) | Acidity by type b (mmol g‒1) | |||||
---|---|---|---|---|---|---|---|
Strong | Weak | Total | Brønsted | Lewis | B/L | ||
H-ZSM-5 | 0.509 | 0.763 | 1.272 | 0.775 | 0.497 | 1.56 | |
Zn3%-ZSM-5 | 0.404 | 0.863 | 1.267 | 0.140 | 1.127 | 0.12 | |
Zn5%-ZSM-5 | 0.349 | 0.906 | 1.255 | 0.113 | 1.142 | 0.10 | |
Zn7%-ZSM-5 | 0.331 | 0.917 | 1.248 | 0.067 | 1.181 | 0.06 |
Fig. 3. Catalytic performances of coupling reaction on all samples with the time on stream (TOS). (a) H-ZSM-5; (b) Zn3%-ZSM-5; (c) Zn5%-ZSM-5; (d) Zn7%-ZSM-5. Reaction conditions: 1 g sample, P = 1 bar, T = 550 °C, total WHSV = 5 h?1 (WHSVn-butane = 4.20 h?1, WHSVCO2 = 0.80 h?1), CO2/n-butane = 0.25 (molar ratio), TOS = 145 min. Notes: The product distribution of aromatics and others were shown in Figs. S5 and S6, respectively. The detailed product distribution, reactant conversion, and important product selectivity were shown in Tables S2 and S3.
|
[1] | Yamei Gan, Tiantian Chai, Jian Zhang, Cong Gao, Wei Song, Jing Wu, Liming Liu, Xiulai Chen. Light-driven CO2 utilization for chemical production in bacterium biohybrids [J]. Chinese Journal of Catalysis, 2024, 60(5): 294-303. |
[2] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[3] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[4] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[5] | Hehe Wei, Xiaoyang Li, Bohan Deng, Jialiang Lang, Ya Huang, Xingyu Hua, Yida Qiao, Binghui Ge, Jun Ge, Hui Wu. Rapid synthesis of Pd single-atom/cluster as highly active catalysts for Suzuki coupling reactions [J]. Chinese Journal of Catalysis, 2022, 43(4): 1058-1065. |
[6] | Xiaoqin Han, Jiachang Zuo, Danlu Wen, Youzhu Yuan. Toluene methylation with syngas to para-xylene by bifunctional ZnZrOx-HZSM-5 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 1156-1164. |
[7] | Teera Chantarojsiri, Tassaneewan Soisuwan, Pornwimon Kongkiatkrai. Toward green syntheses of carboxylates: Considerations of mechanisms and reactions at the electrodes for electrocarboxylation of organohalides and alkenes [J]. Chinese Journal of Catalysis, 2022, 43(12): 3046-3061. |
[8] | Sen Wang, Zhikai Li, Zhangfeng Qin, Mei Dong, Junfen Li, Weibin Fan, Jianguo Wang. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion [J]. Chinese Journal of Catalysis, 2021, 42(7): 1126-1136. |
[9] | Zhiyang Chen, Youming Ni, Fuli Wen, Ziqiao Zhou, Wenliang Zhu, Zhongmin Liu. The carboxylates formed on oxides promoting the aromatization in syngas conversion over composite catalysts [J]. Chinese Journal of Catalysis, 2021, 42(5): 835-843. |
[10] | Sixue Lin, Jing Wang, Yangyang Mi, Senyou Yang, Zheng Wang, Wenming Liu, Daishe Wu, Honggen Peng. Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming [J]. Chinese Journal of Catalysis, 2021, 42(10): 1808-1820. |
[11] | Ensheng Zhan, Zhiping Xiong, Yan Zhou, Mingrun Li, Pengfei Wang, Weibin Fan, Wenjie Shen. Perpendicular intergrowth ZSM-5 plates with shortened 10-MR pores [J]. Chinese Journal of Catalysis, 2020, 41(7): 1132-1139. |
[12] | Qiuyan Zhu, Yeqing Wang, Lingxiang Wang, Zhiyuan Yang, Liang Wang, Xiangju Meng, Feng-Shou Xiao. Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading [J]. Chinese Journal of Catalysis, 2020, 41(7): 1118-1124. |
[13] | Jieya Wen, Lili Ling, Yao Chen, Zhenfeng Bian. Pyroelectricity effect on photoactivating palladium nanoparticles in PbTiO3 for Suzuki coupling reaction [J]. Chinese Journal of Catalysis, 2020, 41(10): 1674-1681. |
[14] | Lisong Fan, Dangguo Cheng, Fengqiu Chen, Xiaoli Zhan. Preparation of highly dispersed iron species over ZSM-5 with enhanced metal-support interaction through freeze-drying impregnation [J]. Chinese Journal of Catalysis, 2019, 40(7): 1109-1115. |
[15] | Ruqun Guan, Xiaoming Zhang, Fangfang Chang, Nan Xue, Hengquan Yang. Incorporation of flexible ionic polymers into a Lewis acid-functionalized mesoporous silica for cooperative conversion of CO2 to cyclic carbonates [J]. Chinese Journal of Catalysis, 2019, 40(12): 1874-1883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||