Chinese Journal of Catalysis ›› 2025, Vol. 69: 123-134.DOI: 10.1016/S1872-2067(24)60171-3
• Articles • Previous Articles Next Articles
Tingting Hua,b, Panpan Fengc,*(), Hongqi Chub,*(
), Teng Gaob, Fusheng Liua,*(
), Wei Zhoub,*(
)
Received:
2024-08-24
Accepted:
2024-10-15
Online:
2025-02-18
Published:
2025-02-10
Contact:
E-mail: Supported by:
Tingting Hu, Panpan Feng, Hongqi Chu, Teng Gao, Fusheng Liu, Wei Zhou. Revealing the regulatory mechanism of built-in electric field in defective mesoporous MIL-125(Ti)@BiOCl S-scheme heterojunctions toward optimized photocatalytic performance[J]. Chinese Journal of Catalysis, 2025, 69: 123-134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60171-3
Fig. 1. (a) Schematic diagram for the preparation route of MIL-125(Ti)@BiOCl heterostructures. TEM (b) and high-resolution TEM (c?e) images of MIL-125(Ti)-3@BiOCl. (f) Select electron diffraction pattern of MIL-125(Ti)-3@BiOCl. (g) TEM elemental mappings of MIL-125(Ti)-3@BiOCl.
Fig. 2. XRD patterns (a), FTIR spectra (b), N2 adsorption-desorption isotherms (c), and the corresponding pore size distributions (d), XPS spectra of Ti 2p (e), and Bi 4f (f) for BiOCl, MIL-125(Ti)-3, and MIL-125(Ti)-3@BiOCl heterojunction, respectively.
Fig. 3. Tauc plots (a), Mott-Schottky plots (b), Zeta potentials (c), The scanning Kelvin probe tests (d), Schematic illustration of the band structure and charge transfer (e) of MIL-125(Ti)-3@BiOCl and PL spectra (f) of BiOCl, MIL-125(Ti)-3 and MIL-125(Ti)-3@BiOCl.
Fig. 4. Photocatalytic activities (a), kinetic analysis results (b), pseudo first order kinetic constants (k) (c) of BiOCl, MIL-125(Ti)-3 and MIL-125(Ti)-3@BiOCl for TC degradation. (d) Free radical capture experiments, ESR spectra of MIL-125(Ti)-3@BiOCl for ?OH (e), h+ (f), and ?O2? (g). Transient photocurrent responses (h) and EIS Nyquist plots (i) of BiOCl, MIL-125(Ti)-3 and MIL-125(Ti)-3@BiOCl.
Fig. 5. (a) XRD patterns of MIL-125 (Ti)-X, where X refers to the amount of acetic acid. (b) XRD patterns of MIL-125 (Ti)-3@BiOCl-Y, where Y refers to the amount of BiOCl, and MIL-125(Ti)-3@BiOCl-25 corresponds to experimental samples MIL-125(Ti)-3@BiOCl. (c) Zeta potentials of MIL-125 (Ti)-X@BiOCl-25, where X refers to the amount of acetic acid. (d) Optimized structures of MIL-125(Ti)-Ligand defects@BiOCl with ligand defects denoted as MIL-125(Ti)-LdZ@BiOCl, where Z represents the number of ligand defects. Here, "Ld" stands for "ligand defects," and this notation simplifies the representation of the structure to MIL-125(Ti)-LdZ@BiOCl, MIL-125(Ti)-Ld0@BiOCl (d1), MIL-125(Ti)-Ld1@BiOCl (d2) and MIL-125(Ti)-Ld2@BiOCl (d3), and d2 corresponds to experimental samples MIL-125(Ti)-3@BiOCl. (e) Differential charge density images of MIL-125(Ti)-Ld0@BiOCl (e1), MIL-125(Ti)-Ld1@BiOCl (e2), and MIL-125(Ti)-Ld2@BiOCl (e3) (The yellow and blue regions represent the increase and decrease of electron density, respectively). (f) The electrostatic potentials of MIL-125(Ti)-Ld0@BiOCl (f1), MIL-125(Ti)-Ld1@BiOCl (f2), and MIL-125(Ti)-Ld2@BiOCl (f3).
|
[1] | Xiaoning Zhan, Yucheng Jin, Bin Han, Ziwen Zhou, Baotong Chen, Xu Ding, Fushun Li, Zhiru Suo, Rong Jiang, Dongdong Qi, Kang Wang, Jianzhuang Jiang. 2D Phthalocyanine-based covalent organic frameworks for infrared light-mediated photocatalysis [J]. Chinese Journal of Catalysis, 2025, 69(2): 271-281. |
[2] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
[3] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. Divulging the potential role of wide band gap semiconductors in electro and photo catalytic water splitting for green hydrogen production [J]. Chinese Journal of Catalysis, 2025, 68(1): 103-145. |
[4] | Shijie Li, Changjun You, Fang Yang, Guijie Liang, Chunqiang Zhuang, Xin Li. Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants [J]. Chinese Journal of Catalysis, 2025, 68(1): 259-271. |
[5] | Yaqiang Wu, Jianuo Li, Wei-Kean Chong, Zhenhua Pan, Qian Wang. Novel materials and techniques for photocatalytic water splitting developed by Professor Kazunari Domen [J]. Chinese Journal of Catalysis, 2025, 68(1): 1-50. |
[6] | Baofei Hao, Younes Ahmadi, Jan Szulejko, Tianhao Zhang, Zhansheng Lu, Ki-Hyun Kim. The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms [J]. Chinese Journal of Catalysis, 2025, 68(1): 282-299. |
[7] | Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives [J]. Chinese Journal of Catalysis, 2025, 68(1): 177-203. |
[8] | Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang. Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite [J]. Chinese Journal of Catalysis, 2024, 64(9): 143-151. |
[9] | Zheng Lin, Wanting Xie, Mengjing Zhu, Changchun Wang, Jia Guo. Boosting photocatalytic hydrogen evolution enabled by SiO2-supporting chiral covalent organic frameworks with parallel stacking sequence [J]. Chinese Journal of Catalysis, 2024, 64(9): 87-97. |
[10] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[11] | Qiqi Zhang, Hui Miao, Jun Wang, Tao Sun, Enzhou Liu. Self-assembled S-scheme In2.77S4/K+-doped g-C3N4 photocatalyst with selective O2 reduction pathway for efficient H2O2 production using water and air [J]. Chinese Journal of Catalysis, 2024, 63(8): 176-189. |
[12] | Chao Li, Shuo Wang, Yuan Liu, Xihe Huang, Yan Zhuang, Shuhong Wu, Ying Wang, Na Wen, Kaifeng Wu, Zhengxin Ding, Jinlin Long. Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 63(8): 164-175. |
[13] | Shiwen Du, Fuxiang Zhang. General applications of density functional theory in photocatalysis [J]. Chinese Journal of Catalysis, 2024, 61(6): 1-36. |
[14] | Mengzhen Ren, Tianfu Liu, Yuanyuan Dong, Zheng Li, Jiaxin Yang, Zhenheng Diao, Hongjin Lv, Guo-Yu Yang. Near-unity photocatalytic dehydrocoupling of thiophenols into disulfides and hydrogen using coupled CdS Nanorods and Ni-containing polyoxometalate [J]. Chinese Journal of Catalysis, 2024, 61(6): 312-321. |
[15] | Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen. Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds [J]. Chinese Journal of Catalysis, 2024, 61(6): 135-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||