Chinese Journal of Catalysis ›› 2025, Vol. 70: 388-398.DOI: 10.1016/S1872-2067(24)60215-9
• Articles • Previous Articles Next Articles
Bo Zhanga, Ru Xiaoa, Liyuan Liua, Xiaobin Liub, Ying Denga,*(), Qingliang Lvb, Zexing Wua, Yunmei Dub, Yanyan Lia,c, Zhenyu Xiaoa,*(
), Lei Wanga,*(
)
Received:
2024-11-01
Accepted:
2024-12-09
Online:
2025-03-18
Published:
2025-03-20
Contact:
* E-mail:Supported by:
Bo Zhang, Ru Xiao, Liyuan Liu, Xiaobin Liu, Ying Deng, Qingliang Lv, Zexing Wu, Yunmei Du, Yanyan Li, Zhenyu Xiao, Lei Wang. Electrochemistry assisted chlorine corrosion strategy: The minute-level fabrication of lattice Cl- functioned high spin-polarized Ni/Fe-LDH array for enhanced anti-Cl- OER performance[J]. Chinese Journal of Catalysis, 2025, 70: 388-398.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60215-9
Fig. 1. (a) Process diagram of preparing E-NF-LDHCl nanosheets using NFF as template. (b) Diagram of chloride ion corrosion during brine electrolysis. SEM (c), TEM (d) image, HRTEM (e) images, selected area atomic mass contrast distribution (f), TEM image and the corresponding mapping for Fe, Ni, O, Cl (g) of E-NF-LDHCl.
Fig. 2. (a) XRD patterns of E-NF-LDHCl powder and E-NF-LDHCl. (b) EPR spectra of NF-LDHCl and E-NF-LDHCl. Fe 2p (c), Cl 2p (d) and O 1s (e) orbital XPS spectra of NF-LDHCl and E-NF-LDHCl. (f) UPS valence band spectra of NF-LDHCl and E-NF-LDHCl.
Fig. 3. OER polarization curves (a), histograms reflecting η100, η1000, and Tafel slope values (b), Cdl curves of the OER (c) and ECSA values and TOF (d) of NFF, NF-LDHCl, E-NF-LDHOH and E-NF-LDHCl. (e,f) in situ electrochemical Raman spectroscopy of E-NF-LDHCl and E-NF-LDHOH in alkaline electrolyte. (g) CP curves of E-NF-LDHCl at 1 A galvanostatic current in different electrolytes. (h) Comparison of OER activities between E-NF-LDHCl in this work and some state-of-the-art Ni/Fe-based OER electrodes in alkaline media from previous reports under the same test conditions.
Fig. 4. (a) OER polarization curves of E-NF-LDHSW, E-NF-LDHOH, NF-LDHSW, RuO2/NFF and NFF. (b) Tafel slope of different samples. (c) Histograms reflecting η100, η1000, and Tafel slope values of the as-formed samples. (d) Comparison of the overpotential (η100) for OER between E-NF-LDHSW and other Ni/Fe-based OER electrodes 1 mol L-1 KOH seawater electrolyzer. (e) The polarization curves of Pt-C/NFF||E-NF-LDHSW and Pt-C/NFF||RuO2/NFF for total seawater splitting in 1 mol L-1 KOH seawater electrolyzer. (f) Faradaic efficiency of E-NF-LDHSW and theoretically calculated and experimentally measured H2 and O2 gas versus time at 200 mA cm?2. Collected H2 volume images generated every 200 s for 1400 s (g), H-type electrolytic cell device diagram (h), and collected O2 volume images generated every 200 s for 1400 s (i) of Pt-C/NFF||E-NF-LDHSW.
Fig. 5. (a,b) Number of Cl? and OH? versus distance above E-NF-LDHCl and E-NF-LDHOH surface from classical MD simulation results. (c) Number comparison of various anions in different regions. (d) Experimental Cdl values of NFF, NF-LDHCl, E-NF-LDHOH and E-NF-LDHCl in alkaline electrolyte and alkaline saline electrolyte, respectively. (e) Fe 3d, Ni 3d, O 2p and Cl 2p PDOS spectra of the E-NF-LDHCl with an inset of the enlarged shaded area. (f) Fe 3d, Ni 3d and O 2p PDOS spectra of the E-NF-LDHOH with an inset of the enlarged shaded area. (g) H2O molecular adsorption energies at the Ni, Fe sites of E-NF-LDHCl and E-NF-LDHOH. (h) The adsorption model of E-NF-LDHCl in OER process. (i) OER reaction pathway for E-NF-LDHCl and E-NF-LDHOH model.
|
[1] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
[2] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
[3] | Minfei Xie, Xing Ji, Huaying Meng, Nanbing Jiang, Zhenyu Luo, Qianqian Huang, Geng Sun, Yunhuai Zhang, Peng Xiao. The role of titanium at the interface of hematite photoanode in multisite mechanism: Reactive site or cocatalyst site? [J]. Chinese Journal of Catalysis, 2024, 64(9): 77-86. |
[4] | Hong-Rui Zhu, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Qi-Ni Zhan, Ting-Yu Shuai, Gao-Ren Li. Recent advances of the catalysts for photoelectrocatalytic oxygen evolution and CO2 reduction reactions [J]. Chinese Journal of Catalysis, 2024, 62(7): 53-107. |
[5] | Qingyun Lv, Weiwei Zhang, Zhipeng Long, Jiantao Wang, Xingli Zou, Wei Ren, Long Hou, Xionggang Lu, Yufeng Zhao, Xing Yu, Xi Li. Large-current polarization-engineered FeOOH@NiOOH electrocatalyst with stable Fe sites for large-current oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 62(7): 254-264. |
[6] | Jingya Guo, Wei Liu, Wenzhe Shang, Duanhui Si, Chao Zhu, Jinwen Hu, Cuncun Xin, Xusheng Cheng, Songlin Zhang, Suchan Song, Xiuyun Wang, Yantao Shi. Engineering fully exposed edge-plane sites on carbon-based electrodes for efficient water oxidation [J]. Chinese Journal of Catalysis, 2024, 60(5): 272-283. |
[7] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[8] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
[9] | Yingjie Guo, Shilong Li, Wasihun Abebe, Jingyang Wang, Lei Shi, Di Liu, Shenlong Zhao. Non-derivatized metal-organic framework nanosheets for water electrolysis: Fundamentals, regulation strategies and recent advances [J]. Chinese Journal of Catalysis, 2024, 67(12): 21-53. |
[10] | Long Song, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Zexing Wu, Lei Wang. Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation [J]. Chinese Journal of Catalysis, 2024, 66(11): 53-75. |
[11] | Zhaoping Shi, Ziang Wang, Hongxiang Wu, Meiling Xiao, Changpeng Liu, Wei Xing. High-density Ir single sites from rapid ligand transformation for efficient water electrolysis [J]. Chinese Journal of Catalysis, 2024, 66(11): 223-232. |
[12] | Ya’nan Xia, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Jianping Lai, Lei Wang. Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 66(11): 110-138. |
[13] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[14] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
[15] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||