Chinese Journal of Catalysis ›› 2025, Vol. 71: 256-266.DOI: 10.1016/S1872-2067(24)60254-8
• Articles • Previous Articles Next Articles
Xincheng Caoa, Jiaping Zhaoa, Feng Longa, Peng Liua, Yuguo Donga, Zupeng Chenb,*(), Junming Xua,*(
), Jianchun Jianga,*(
)
Received:
2024-11-22
Accepted:
2024-12-29
Online:
2025-04-18
Published:
2025-04-13
Contact:
* E-mail: Supported by:
Xincheng Cao, Jiaping Zhao, Feng Long, Peng Liu, Yuguo Dong, Zupeng Chen, Junming Xu, Jianchun Jiang. Highly dispersed MoOx-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes[J]. Chinese Journal of Catalysis, 2025, 71: 256-266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60254-8
Fig. 1. (a) XRD patterns of the prepared catalysts. TEM (b), HRTEM (c), AC-HAADF-STEM (d) images, and the corresponding 2D pseudo-color surface plot (e) of 0.2 MoOx-Ru/C. (f) CO pulse adsorption profiles of the prepared catalysts. (g-i) STEM-associated EDX elemental mapping images of 0.2 MoOx-Ru/C.
Fig. 2. (a) Mo K-edge XANES spectra of 0.2 MoOx-Ru/C and reference samples. (b) Mo 3d XPS spectra of 0.2 MoOx-Ru/C and MoO3. (c) Mo K-edge FT-EXAFS spectra of 0.2 MoOx-Ru/C and reference samples. (d) R-space fitting results of the EXAFES spectra of 0.2 MoOx-Ru/C catalyst. Wavelet transform of Mo K-edge data: 0.2 MoOx-Ru/C (e), Mo foil (f), MoO2 (g), and MoO3 (h). (i) Schematic diagrams of the MoOx-Ru. Ru, yellow; O, red; Mo, blue.
Fig. 3. (a) FTIR spectra of pyridine adsorption at 150 °C. (b) FTIR spectra of acetonitrile-d on Ru/C, 0.2 MoOx-Ru/C and 0.2 MoOx-Ru/C (N2). XPS spectra of Mo 3d (c) and O 1s (d) for 0.2 MoOx-Ru/C and 0.2 MoOx-Ru/C (N2) catalysts.
Fig. 4. (a) Catalyst screening. (b) Effect of MoOx loadings upon the HDO of methyl stearate. (c) Reaction rate and formation rate of alkanes over Ru/C and 0.2 MoOx-Ru/C. (d) Comparison of the catalytic performance of 0.2 MoOx-Ru/C with the state-of-the-art catalysts for the HDO of fatty esters (details in Table S3). Reaction conditions: 0.1g reactant, 0.03 g catalyst, 150 °C, 3.0 MPa H2, 6.0 h, and 10 mL n-hexane.
Fig. 5. (a) Conversion and product distribution along with reaction time over 0.2 MoOx-Ru/C at 150 °C. Effect of reaction temperature (b) and product distributions versus time (c) at 205 °C over Ru/C and 0.2 MoOx-Ru/C. (d) Reaction network for the HDO of fatty acid esters over the Ru/C and MoOx-Ru/C. Reaction conditions: 0.1 g reactant, 0.03 g catalyst, 150 °C, 3.0 MPa H2, 6.0 h, 10 mL n-hexane.
Entry | Substrate | T (°C), t (h) | Con. (%) | Selectivity (%) |
---|---|---|---|---|
1 | ![]() | 150, 6.0 | >99.0 | n-C9H19-CH3 74.8 n-C9H20 24.6 |
2 | ![]() | 150, 6.0 | 96.3 | n-C11H23-CH3 72.1 n-C11H24 27.5 |
3 | ![]() | 150, 6.0 | >99.0 | n-C15H31-CH3 76.7 n-C15H32 22.1 |
4 | ![]() | 150, 6.0 | >99.0 | n-C17H35-CH3 76.8 n-C17H36 23.2 |
5 | ![]() | 150, 6.0 | >99.0 | n-C18H37-CH3 71.1 n-C18H38 23.0 |
6 | ![]() | 150, 6.0 | >99.0 | n-C15H31-CH3 68.9 n-C15H32 31.1 |
7 | ![]() | 150, 6.0 | >99.0 | n-C17H33-CH3 67.1 n-C17H34 31.5 |
8 | ![]() | 150, 6.0 | >99.0 | n-C17H33-CH3 67.6 n-C17H34 31.7 |
9 | ![]() | 150, 6.0 | >99.0 | C11H23-CH3 67.5 C11H24 30.7 |
10 | ![]() | 140, 6.0 | >99.0 | C10H19-CH3 60.4 C10H22 23.9 |
Table 1 The substrate scope of various esters over 0.2 MoOx-Ru/C catalyst.
Entry | Substrate | T (°C), t (h) | Con. (%) | Selectivity (%) |
---|---|---|---|---|
1 | ![]() | 150, 6.0 | >99.0 | n-C9H19-CH3 74.8 n-C9H20 24.6 |
2 | ![]() | 150, 6.0 | 96.3 | n-C11H23-CH3 72.1 n-C11H24 27.5 |
3 | ![]() | 150, 6.0 | >99.0 | n-C15H31-CH3 76.7 n-C15H32 22.1 |
4 | ![]() | 150, 6.0 | >99.0 | n-C17H35-CH3 76.8 n-C17H36 23.2 |
5 | ![]() | 150, 6.0 | >99.0 | n-C18H37-CH3 71.1 n-C18H38 23.0 |
6 | ![]() | 150, 6.0 | >99.0 | n-C15H31-CH3 68.9 n-C15H32 31.1 |
7 | ![]() | 150, 6.0 | >99.0 | n-C17H33-CH3 67.1 n-C17H34 31.5 |
8 | ![]() | 150, 6.0 | >99.0 | n-C17H33-CH3 67.6 n-C17H34 31.7 |
9 | ![]() | 150, 6.0 | >99.0 | C11H23-CH3 67.5 C11H24 30.7 |
10 | ![]() | 140, 6.0 | >99.0 | C10H19-CH3 60.4 C10H22 23.9 |
Fig. 6. (a) TPD analysis of methyl octanoate over Ru/C and 0.2 MoOx-Ru/C catalysts. DRIFTS spectra of methyl octanoate adsorption over Ru/C (b) and 0.2 MoOx-Ru/C (c) catalysts. (d) The adsorption energy of methyl propionate over the Ru (001) and Ru-Mo3O7. The kinetic barriers of methyl propionate conversion over Ru-Mo3O7 (e) and Ru (001) (f). Ru: purple; Mo: light green; O: red; H: white; C: dark gray.
Fig. 8. TPD of heptane (a), and the associated decomposition product of H2 (b), CH4 (c), and C3H8 (d) over Ru/C, 0.2 MoOx-Ru/C, and 0.5 MoOx-Ru/C. (e) The diagram of the reduced hydrocracking of alkanes over MoOx-Ru/C compared to Ru/C catalyst.
|
[1] | Jun Wu, Liqian Liu, Xinyue Yan, Gang Pan, Jiahao Bai, Chengbing Wang, Fuwei Li, Yong Li. Microenvironment engineering of nitrogen-doped hollow carbon spheres encapsulated with Pd catalysts for highly selective hydrodeoxygenation of biomass-derived vanillin in water [J]. Chinese Journal of Catalysis, 2025, 71(4): 267-284. |
[2] | Lin Dong, Zhiqiang Fang, Qianbo Yuan, Yong Fan, Yong Yang, Ping Wang, Shixiong Sheng, Yanqin Wang, Zupeng Chen. Selective utilization of formaldehyde stabilizing additive and methoxy groups in lignin for the production of high-carbon-number arenes [J]. Chinese Journal of Catalysis, 2025, 68(1): 356-365. |
[3] | Lujie Liu, Ben Liu, Yoshinao Nakagawa, Sibao Liu, Liang Wang, Mizuho Yabushita, Keiichi Tomishige. Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation [J]. Chinese Journal of Catalysis, 2024, 62(7): 1-31. |
[4] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[5] | Yanling Yang, Peijie Han, Yuanbao Zhang, Jingdong Lin, Shaolong Wan, Yong Wang, Haichao Liu, Shuai Wang. Site requirements of supported W2C nanocatalysts for efficient hydrodeoxygenation of m-cresol to aromatics [J]. Chinese Journal of Catalysis, 2024, 67(12): 91-101. |
[6] | Wangyang Wu, Shidan Yang, Huidan Qian, Ling Zhang, Lishan Peng, Li Li, Bin Liu, Zidong Wei. Interface engineering of advanced electrocatalysts toward alkaline hydrogen evolution reactions [J]. Chinese Journal of Catalysis, 2024, 66(11): 1-19. |
[7] | Ben Liu, Yoshinao Nakagawa, Mizuho Yabushita, Keiichi Tomishige. Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols [J]. Chinese Journal of Catalysis, 2024, 65(10): 89-102. |
[8] | Xin Kang, Qiangmin Yu, Tianhao Zhang, Shuqi Hu, Heming Liu, Zhiyuan Zhang, Bilu Liu. A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 9-24. |
[9] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[10] | Yuyan Qiao, Yanqiu Pan, Jiangwei Zhang, Bin Wang, Tingting Wu, Wenjun Fan, Yucheng Cao, Rashid Mehmood, Fei Zhang, Fuxiang Zhang. Multiple carbon interface engineering to boost oxygen evolution of NiFe nanocomposite electrocatalyst [J]. Chinese Journal of Catalysis, 2022, 43(9): 2354-2362. |
[11] | Dongdong Wang, Wanbing Gong, Jifang Zhang, Miaomiao Han, Chun Chen, Yunxia Zhang, Guozhong Wang, Haimin Zhang, Huijun Zhao. Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water [J]. Chinese Journal of Catalysis, 2021, 42(11): 2027-2037. |
[12] | Arif Ali, Chen Zhao. Ru nanoparticles supported on hydrophilic mesoporous carbon catalyzed low-temperature hydrodeoxygenation of microalgae oil to alkanes at aqueous-phase [J]. Chinese Journal of Catalysis, 2020, 41(8): 1174-1185. |
[13] | Nhung N. Duong, Darius Aruho, Bin Wang, Daniel E. Resasco. Hydrodeoxygenation of anisole over different Rh surfaces [J]. Chinese Journal of Catalysis, 2019, 40(11): 1721-1730. |
[14] | Jun Yang, Yupeng Chang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Bimetallic Cr-In/H-SSZ-13 for selective catalytic reduction of nitric oxide by methane [J]. Chinese Journal of Catalysis, 2018, 39(5): 1004-1011. |
[15] | Doudou Ding, Xingyan Xu, Pengfei Tian, Xianglin Liu, Jing Xu, Yifan Han. Promotional effects of Sb on Pd-based catalysts for the direct synthesis of hydrogen peroxide at ambient pressure [J]. Chinese Journal of Catalysis, 2018, 39(4): 673-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||