Chinese Journal of Catalysis ›› 2025, Vol. 71: 340-352.DOI: 10.1016/S1872-2067(24)60255-X
• Articles • Previous Articles Next Articles
Liyuan Xiao, Xue Bai, Jingyi Han, Zhenlu Wang*(), Jingqi Guan*(
)
Received:
2024-12-24
Accepted:
2025-01-17
Online:
2025-04-18
Published:
2025-04-13
Contact:
* E-mail: Supported by:
Liyuan Xiao, Xue Bai, Jingyi Han, Zhenlu Wang, Jingqi Guan. Tuning d-band electronic structure of Ni-Fe oxyhydroxides via doping engineering boosts seawater oxidation performance[J]. Chinese Journal of Catalysis, 2025, 71: 340-352.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60255-X
Fig. 2. Simulation of the basic electrochemical steps of OER at Fe site (a) and NiFe (b) sites. Volcanic curve of theoretical overpotential and OH* and O* intermediates free energy generation at Fe site (c), Ni site (d) and NiFe sites (e).
Fig. 3. (a,b) LSV curves of NiFeM-OOH/NF. Inset shows the Tafel slopes. (c) Performance comparison diagram. (d) LSV curves for NiFeMn-OOH/NF, NiFe-OOH/NF, Ni-OOH/NF, Fe-OOH/NF and Mn-OOH/NF. (e) LSV curves of NiFeMnx-OOH/NF with different Mn contents. (f) EIS spectra. (g) Arrhenius plots. (h) Chronoamperometric response of NiFeMn-OOH/NF and NiFe-OOH/NF.
Fig. 4. LSV curves (a) and Tafel slopes (b) in different electrolytes. (c) LSV curves of NiFeMn-OOH/NF and NiFe-OOH/NF in alkaline seawater. (d) Chronoamperometry of NiFeMn-OOH/NF and NiFe-OOH/NF in alkaline seawater at 200 mA·cm-2. (e) EIS spectra. (f) LSV curves of overall water splitting in alkaline seawater. Inset shows a schematic diagram of the NiFeMn-OOH/NF||Pt asymmetric electrolyzer. (g) Chronoamperometry of NiFeMn-OOH/NF||Pt electrolyzers in alkaline seawater at 10 mA·cm-2. Inset shows the LSV curves before and after the stability test.
Fig. 6. (a) XRD patterns. (b) In-situ Raman spectra of NiFeMn-OOH/NF under different applied potentials. High-resolution Fe 2p (c), Ni 2p (d), Mn 2p (e) XPS spectra and O 1s XPS spectra (f).
Fig. 7. XANES spectrum (a), EXAFS spectrum (b), and WT spectrum (c) illustrating the Ni K-edge characteristics in NiFeMn-OOH. XANES spectrum (d), EXAFS spectrum (e), and WT spectrum (f) illustrating the Fe K-edge characteristics in NiFeMn-OOH. XANES spectrum (g), EXAFS spectrum (h), and WT spectrum (i) illustrating the Mn K-edge characteristics in NiFeMn-OOH.
Fig. 8. DOS diagram of NiFeOOH (a) and NiFeMnOOH (b). (c) DOS diagram of Fe-3d. (d) NiFeMn-OOH as a catalyst for cycling in OER. (e) Comparison of Fermi levels of NiFe-OOH and NiFeMn-OOH. (f) Gibbs free energy diagram for the OER on NiFeOOH and NiFeMnOOH.
|
[1] | Bo Zhang, Ru Xiao, Liyuan Liu, Xiaobin Liu, Ying Deng, Qingliang Lv, Zexing Wu, Yunmei Du, Yanyan Li, Zhenyu Xiao, Lei Wang. Electrochemistry assisted chlorine corrosion strategy: The minute-level fabrication of lattice Cl- functioned high spin-polarized Ni/Fe-LDH array for enhanced anti-Cl- OER performance [J]. Chinese Journal of Catalysis, 2025, 70(3): 388-398. |
[2] | Yimeng Sun, Jun Chen, Lin Liu, Haibo Chi, Hongxian Han. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2 [J]. Chinese Journal of Catalysis, 2025, 69(2): 99-110. |
[3] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
[4] | Minfei Xie, Xing Ji, Huaying Meng, Nanbing Jiang, Zhenyu Luo, Qianqian Huang, Geng Sun, Yunhuai Zhang, Peng Xiao. The role of titanium at the interface of hematite photoanode in multisite mechanism: Reactive site or cocatalyst site? [J]. Chinese Journal of Catalysis, 2024, 64(9): 77-86. |
[5] | Zelong Qiao, Run Jiang, Jimmy Yun, Dapeng Cao. Why the abnormal phenomena of D-band center theory exist? A new BASED theory for surface catalysis and chemistry [J]. Chinese Journal of Catalysis, 2024, 64(9): 44-53. |
[6] | Hong-Rui Zhu, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Qi-Ni Zhan, Ting-Yu Shuai, Gao-Ren Li. Recent advances of the catalysts for photoelectrocatalytic oxygen evolution and CO2 reduction reactions [J]. Chinese Journal of Catalysis, 2024, 62(7): 53-107. |
[7] | Qingyun Lv, Weiwei Zhang, Zhipeng Long, Jiantao Wang, Xingli Zou, Wei Ren, Long Hou, Xionggang Lu, Yufeng Zhao, Xing Yu, Xi Li. Large-current polarization-engineered FeOOH@NiOOH electrocatalyst with stable Fe sites for large-current oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 62(7): 254-264. |
[8] | Jingya Guo, Wei Liu, Wenzhe Shang, Duanhui Si, Chao Zhu, Jinwen Hu, Cuncun Xin, Xusheng Cheng, Songlin Zhang, Suchan Song, Xiuyun Wang, Yantao Shi. Engineering fully exposed edge-plane sites on carbon-based electrodes for efficient water oxidation [J]. Chinese Journal of Catalysis, 2024, 60(5): 272-283. |
[9] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[10] | Jian Yiing Loh, Joel Jie Foo, Feng Ming Yap, Hanfeng Liang, Wee-Jun Ong. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2024, 58(3): 37-85. |
[11] | Yingjie Guo, Shilong Li, Wasihun Abebe, Jingyang Wang, Lei Shi, Di Liu, Shenlong Zhao. Non-derivatized metal-organic framework nanosheets for water electrolysis: Fundamentals, regulation strategies and recent advances [J]. Chinese Journal of Catalysis, 2024, 67(12): 21-53. |
[12] | Long Song, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Zexing Wu, Lei Wang. Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation [J]. Chinese Journal of Catalysis, 2024, 66(11): 53-75. |
[13] | Zhaoping Shi, Ziang Wang, Hongxiang Wu, Meiling Xiao, Changpeng Liu, Wei Xing. High-density Ir single sites from rapid ligand transformation for efficient water electrolysis [J]. Chinese Journal of Catalysis, 2024, 66(11): 223-232. |
[14] | Ya’nan Xia, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Jianping Lai, Lei Wang. Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 66(11): 110-138. |
[15] | Shanshan Lai, Jiakun Su, Shujuan Jiang, Jianjun Zhang, Shaoqing Song. Activating d10 electronic configuration to regulate p-band centers as efficient active sites for solar energy conversion into H2 by surface atomic arrangement [J]. Chinese Journal of Catalysis, 2024, 65(10): 185-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||