Chinese Journal of Catalysis ›› 2025, Vol. 72: 289-300.DOI: 10.1016/S1872-2067(24)60278-0
• Articles • Previous Articles Next Articles
Xianxuan Rena, Rozemarijn D. E. Krösschella, Zhuowu Menb, Peng Wanga,b,*(), Ivo A. W. Filota,*(
), Emiel J. M. Hensena,*(
)
Received:
2024-12-05
Accepted:
2025-02-03
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: p.wang@tue.nl (P. Wang), i.a.w.filot@tue.nl (I. Filot), e.j.m.hensen@tue.nl (E. Hensen).
Xianxuan Ren, Rozemarijn D. E. Krösschell, Zhuowu Men, Peng Wang, Ivo A. W. Filot, Emiel J. M. Hensen. A theoretical study of the role of K on the reverse water-gas shift reaction on Hägg carbide[J]. Chinese Journal of Catalysis, 2025, 72: 289-300.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60278-0
Fig. 1. Top and side view of the (010) (a) and the (510) (b) surfaces models of Ha?gg carbide. The solid lines correspond to the top and bottom edges of the periodic supercell. The FR and P5 sites are indicated by dotted white lines.
Surface | Elementary step | Unpromoted | K2O Promoted | |||||
---|---|---|---|---|---|---|---|---|
Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | ΔEf (kJ/mol) | ||
(010) | CO2* + * → CO* + O* | 56 | 142 | -86 | 45 | 146 | -101 | -11 |
(010) | CO2* + H* → HCOO* + * | 103 | 23 | 80 | 63 | 9 | 54 | -40 |
(010) | CO2* + H* → COOH* + * | 122 | 44 | 78 | 118 | 32 | 86 | -4 |
(010) | HCOO* + * → HCO* + O* | 28 | 136 | -108 | 64 | 133 | -69 | 36 |
(010) | COOH* + * → CO* + OH* | 34 | 115 | -81 | 36 | 168 | -132 | 2 |
(510) | CO2* + * → CO* + O* | 33 | 171 | -138 | 14 | 156 | -142 | -19 |
(510) | CO2* + H* → HCOO* + * | 79 | 25 | 54 | 71 | 3 | 68 | -8 |
(510) | CO2* + H* → COOH* + * | 57 | 4 | 53 | 115 | 61 | 54 | 58 |
(510) | HCOO* + * → HCO* + O* | 55 | 115 | -60 | 26 | 113 | -87 | -29 |
(510) | COOH* + * → CO* + OH* | 68 | 171 | -103 | 70 | 153 | -83 | 2 |
Table 1 Forward reaction barriers (Ef), backward reaction barriers (Eb) and reaction energies (Erxn) of CO dissociation via direct and H-assisted pathways, along with the difference in forward barrier (ΔEf) between the unpromoted and promoted surfaces for the (010) and (510) of χ-Fe5C2.
Surface | Elementary step | Unpromoted | K2O Promoted | |||||
---|---|---|---|---|---|---|---|---|
Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | ΔEf (kJ/mol) | ||
(010) | CO2* + * → CO* + O* | 56 | 142 | -86 | 45 | 146 | -101 | -11 |
(010) | CO2* + H* → HCOO* + * | 103 | 23 | 80 | 63 | 9 | 54 | -40 |
(010) | CO2* + H* → COOH* + * | 122 | 44 | 78 | 118 | 32 | 86 | -4 |
(010) | HCOO* + * → HCO* + O* | 28 | 136 | -108 | 64 | 133 | -69 | 36 |
(010) | COOH* + * → CO* + OH* | 34 | 115 | -81 | 36 | 168 | -132 | 2 |
(510) | CO2* + * → CO* + O* | 33 | 171 | -138 | 14 | 156 | -142 | -19 |
(510) | CO2* + H* → HCOO* + * | 79 | 25 | 54 | 71 | 3 | 68 | -8 |
(510) | CO2* + H* → COOH* + * | 57 | 4 | 53 | 115 | 61 | 54 | 58 |
(510) | HCOO* + * → HCO* + O* | 55 | 115 | -60 | 26 | 113 | -87 | -29 |
(510) | COOH* + * → CO* + OH* | 68 | 171 | -103 | 70 | 153 | -83 | 2 |
Fig. 4. DOS of C-O bond of CO2 in the gas phase (a) and on the (010) surface (b), and on the K2O-promoted (010) surface (c) of χ-Fe5C2. COHP of the C-O bonds in CO2 in the gas phase (d), on the (010) surface (e), and on the K2O-promoted (010) surface (f) of χ-Fe5C2.
Fig. 5. iDOS (a,b) and iCOHP (c,d) of C-O bond of CO2 in the gas phase, on the unpromoted surfaces; and the K2O-promoted surfaces. The results for the unpromoted and K2O-promoted surfaces are indicated by hashed and dotted bars, respectively.
Fig. 6. Reaction energy diagrams of H2O formation through O* hydrogenation followed by OH* hydrogenation or OH* disproportionation pathways on the (510) (a) and K2O-promoted (510) (b) surfaces of χ-Fe5C2.
Fig. 8. Microkinetics simulations on the unpromoted and K2O-promoted (510) surfaces of χ-Fe5C2: CO2 conversion rate (a) and CO and CH4 rates (b) as a function of temperature (p = 20 bar, H2/CO ratio = 4).
Fig. 9. Microkinetics simulations on the (left) unpromoted and (right) K2O-promoted (510) surfaces of χ-Fe5C2: selectivity (a,b) and coverage (c,d) as a function of temperature (p = 20 bar, H2/CO ratio = 4).
Fig. 10. Microkinetics simulations on the (left) unpromoted and (right) K2O-promoted (510) surfaces of χ-Fe5C2: degree of rate control (a,b) and reaction order and apparent activation energy (c,d) as a function of temperature (p = 20 bar, H2/CO ratio = 4).
|
[1] | Zihao Jiao, Chengyi Zhang, Ya Liu, Liejin Guo, Ziyun Wang. Graph neural network-driven prediction of high-performance CO2 reduction catalysts based on Cu-based high-entropy alloys [J]. Chinese Journal of Catalysis, 2025, 71(4): 197-207. |
[2] | Zhe Chen, Tao Wang. Understanding the C−C coupling mechanism in electrochemical CO reduction at low CO coverage: Dynamic change in site preference matters [J]. Chinese Journal of Catalysis, 2025, 69(2): 193-202. |
[3] | Jing Liu, Xiandi Ma, Jeonghan Roh, Dongwon Shin, Ara Cho, Jeong Woo Han, Jianping Long, Zhen Zhou, Menggai Jiao, Kug-Seung Lee, EunAe Cho. Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 69(2): 259-270. |
[4] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[5] | Caixia Liu, Chaojun Huang, Baiyu Fan, Yan Zhang, Lijing Fang, Yuhe Wang, Qingling Liu, Weichao Wang, Yanguo Chen, Yawei Zhang, Jiancheng Liu, Fang Dong, Ziyin Zhang. An unexpected reversal: The smart performance of hydrogen chloride on SbCe catalysts for NH3-SCR reaction [J]. Chinese Journal of Catalysis, 2025, 68(1): 376-385. |
[6] | Neng Gong, Quanzheng Deng, Yujiao Wang, Zitao Wang, Lu Han, Peng Wu, Shun’ai Che. Co nanoparticles confined in mesopores of MFI zeolite for selective syngas conversion to heavy liquid hydrocarbon fuels [J]. Chinese Journal of Catalysis, 2025, 68(1): 246-258. |
[7] | Nan Mu, Tingting Bo, Yugao Hu, Ruixin Xu, Yanyu Liu, Wei Zhou. Single-atom catalysts based on polarization switching of ferroelectric In2Se3 for N2 reduction [J]. Chinese Journal of Catalysis, 2024, 63(8): 244-257. |
[8] | Xinyu Chen, Cong-Cong Zhao, Jing Ren, Bo Li, Qianqian Liu, Wei Li, Fan Yang, Siqi Lu, YuFei Zhao, Li-Kai Yan, Hong-Ying Zang. An oxygen-vacancy-rich polyoxometalate-aided Ag-based heterojunction electrocatalyst for nitrogen fixation [J]. Chinese Journal of Catalysis, 2024, 62(7): 209-218. |
[9] | Jieyu Liu, Haiqiang Guo, Yulin Xiong, Xing Chen, Yifu Yu, Changhong Wang. Rational design of Pt-anchored single-atom alloy electrocatalysts for NO-to-NH3 conversion by density functional theory and machine learning [J]. Chinese Journal of Catalysis, 2024, 62(7): 243-253. |
[10] | Shiwen Du, Fuxiang Zhang. General applications of density functional theory in photocatalysis [J]. Chinese Journal of Catalysis, 2024, 61(6): 1-36. |
[11] | Adel Al-Salihy, Ce Liang, Abdulwahab Salah, Abdel-Basit Al-Odayni, Ziang Lu, Mengxin Chen, Qianqian Liu, Ping Xu. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 360-375. |
[12] | De-Gui Wu, Xiao-Gen Xiong, Zhong-Dong Zhao, Shu-Qin Song, Zhao-Bin Ding. Unravelling ligand topology effect on the binding of oxygen reduction reaction intermediates on Fe-Nx-C single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 59(4): 214-224. |
[13] | Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. The effects of nitrogen-doping on photocatalytic mineralization of TiO2 nanocatalyst against formaldehyde in ambient air [J]. Chinese Journal of Catalysis, 2024, 59(4): 303-323. |
[14] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[15] | Yan Duan, Mifeng Xue, Bin Liu, Man Zhang, Yuchen Wang, Baojun Wang, Riguang Zhang, Kai Yan. Integration of theory prediction and experimental electrooxidation of glycerol on NiCo2O4 nanosheets [J]. Chinese Journal of Catalysis, 2024, 57(2): 68-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||