Chinese Journal of Catalysis ›› 2025, Vol. 68: 246-258.DOI: 10.1016/S1872-2067(24)60166-X
• Articles • Previous Articles Next Articles
Neng Gonga,1, Quanzheng Denga,1, Yujiao Wangb, Zitao Wangc, Lu Hana,*(), Peng Wud,*(
), Shun’ai Chee,*(
)
Received:
2024-07-03
Accepted:
2024-09-27
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: About author:
1Contributed equally to this work.
Supported by:
Neng Gong, Quanzheng Deng, Yujiao Wang, Zitao Wang, Lu Han, Peng Wu, Shun’ai Che. Co nanoparticles confined in mesopores of MFI zeolite for selective syngas conversion to heavy liquid hydrocarbon fuels[J]. Chinese Journal of Catalysis, 2025, 68: 246-258.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60166-X
Fig. 1 Strategy for confining the Co NPs in micropores and mesopores of OMMZ for selective FTS of liquid fuels with controlled carbon number distribution, which would be realized by impregnation with smaller precursor of Co-acet (9.4 × 4.2 × 2.5 ?) and larger precursor of Co-bpy (9.5 × 8.7 × 7.9 ?) than the 10-MR micropores (ca. 5.5 ?) of MFI, respectively. (a) shows the low- and high-angle XRD patterns of Na-OMMZ, Co-acet/Na-OMMZ and Co-bpy/Na-OMMZ. Na-OMMZ show well-resolved diffraction peaks centered at 2θ = 1.50° due to the presence of ordered mesostructure with a d-spacing of 5.9 nm. The mesostructured-related peaks are invisible in Co-acet/Na-OMMZ and Co-bpy/Na-OMMZ (Fig. 1(a1)), which is possibly due to that the mesopores are partially occupied by Co NPs. The high-angle XRD patterns indicate all samples possess the pure MFI
Fig. 1. Morphology and structure of Na-OMMZ, Co-acet/Na-OMMZ and Co-bpy/Na-OMMZ. Low- and high-angle XRD patterns (a1,2), N2 adsorption-desorption isotherms and pore size distributions (b1,2). SEM images, HAADF-STEM images, elemental mappings and structural models of Na-OMMZ (c1-4), Co-acet/Na-OMMZ (d1-4) and Co-bpy/Na-OMMZ (e1-4).
Sample | ABETa (m2 g-1) | Aextb (m2 g-1) | Pore sizec (nm) | Vmicrod (cm3 g-1) | Vtotale (cm3 g-1) | Si/Al ratiof | Loading Cof (wt%) | Amounts of acid sitesg | |
---|---|---|---|---|---|---|---|---|---|
B (μmol g-1) | L (μmol g-1) | ||||||||
Na-bulky ZSM-5 | 362 | 37 | 3.2 | 0.15 | 0.44 | 112 | — | — | 102.2 |
Na-meso-ZSM-5 | 388 | 168 | 3.5 | 0.09 | 0.46 | 111 | — | — | 106.0 |
Na-OMMZ | 856 | 505 | 3.6 | 0.21 | 0.67 | 90 | — | — | 112.4 |
H-bulky ZSM-5 | 366 | 49 | 3.4 | 0.15 | 0.41 | 109 | — | 65.8 | 40.5 |
H-meso-ZSM-5 | 408 | 165 | 3.5 | 0.09 | 0.49 | 110 | — | 50.4 | 50.9 |
H-OMMZ | 863 | 503 | 3.6 | 0.21 | 0.70 | 98 | — | 22.0 | 73.8 |
Co-acet/Na-bulky ZSM-5 | 317 | 63 | 3.5 | 0.12 | 0.38 | 105 | 9.9 | — | 84.4 |
Co-acet/Na-meso-ZSM-5 | 371 | 126 | 3.5 | 0.13 | 0.46 | 111 | 9.4 | — | 74.0 |
Co-bpy/Na-meso-ZSM-5 | 370 | 136 | 3.5 | 0.10 | 0.44 | 112 | 9.3 | — | 76.3 |
Co-acet/Na-OMMZ | 508 | 334 | 4.3 | 0.12 | 0.50 | 81 | 9.1 | — | 79.8 |
Co-bpy/Na-OMMZ | 574 | 388 | 4.4 | 0.12 | 0.55 | 84 | 8.8 | — | 78.3 |
Co-acet/H-bulky ZSM-5 | 355 | 81 | 3.5 | 0.13 | 0.36 | 102 | 9.6 | 25.8 | 48.3 |
Co-acet/H-meso-ZSM-5 | 369 | 131 | 3.7 | 0.11 | 0.47 | 116 | 9.6 | 22.3 | 48.9 |
Co-bpy/H-meso-ZSM-5 | 345 | 154 | 3.5 | 0.09 | 0.47 | 115 | 9.5 | 28.1 | 52.2 |
Co-acet/H-OMMZ | 534 | 345 | 4.1 | 0.14 | 0.54 | 104 | 9.5 | 18.2 | 56.4 |
Co-bpy/H-OMMZ | 585 | 391 | 4.2 | 0.12 | 0.54 | 106 | 9.3 | 15.1 | 60.4 |
Table 1 Textural properties, element composition and acidity amounts of different zeolites before and after Co loading.
Sample | ABETa (m2 g-1) | Aextb (m2 g-1) | Pore sizec (nm) | Vmicrod (cm3 g-1) | Vtotale (cm3 g-1) | Si/Al ratiof | Loading Cof (wt%) | Amounts of acid sitesg | |
---|---|---|---|---|---|---|---|---|---|
B (μmol g-1) | L (μmol g-1) | ||||||||
Na-bulky ZSM-5 | 362 | 37 | 3.2 | 0.15 | 0.44 | 112 | — | — | 102.2 |
Na-meso-ZSM-5 | 388 | 168 | 3.5 | 0.09 | 0.46 | 111 | — | — | 106.0 |
Na-OMMZ | 856 | 505 | 3.6 | 0.21 | 0.67 | 90 | — | — | 112.4 |
H-bulky ZSM-5 | 366 | 49 | 3.4 | 0.15 | 0.41 | 109 | — | 65.8 | 40.5 |
H-meso-ZSM-5 | 408 | 165 | 3.5 | 0.09 | 0.49 | 110 | — | 50.4 | 50.9 |
H-OMMZ | 863 | 503 | 3.6 | 0.21 | 0.70 | 98 | — | 22.0 | 73.8 |
Co-acet/Na-bulky ZSM-5 | 317 | 63 | 3.5 | 0.12 | 0.38 | 105 | 9.9 | — | 84.4 |
Co-acet/Na-meso-ZSM-5 | 371 | 126 | 3.5 | 0.13 | 0.46 | 111 | 9.4 | — | 74.0 |
Co-bpy/Na-meso-ZSM-5 | 370 | 136 | 3.5 | 0.10 | 0.44 | 112 | 9.3 | — | 76.3 |
Co-acet/Na-OMMZ | 508 | 334 | 4.3 | 0.12 | 0.50 | 81 | 9.1 | — | 79.8 |
Co-bpy/Na-OMMZ | 574 | 388 | 4.4 | 0.12 | 0.55 | 84 | 8.8 | — | 78.3 |
Co-acet/H-bulky ZSM-5 | 355 | 81 | 3.5 | 0.13 | 0.36 | 102 | 9.6 | 25.8 | 48.3 |
Co-acet/H-meso-ZSM-5 | 369 | 131 | 3.7 | 0.11 | 0.47 | 116 | 9.6 | 22.3 | 48.9 |
Co-bpy/H-meso-ZSM-5 | 345 | 154 | 3.5 | 0.09 | 0.47 | 115 | 9.5 | 28.1 | 52.2 |
Co-acet/H-OMMZ | 534 | 345 | 4.1 | 0.14 | 0.54 | 104 | 9.5 | 18.2 | 56.4 |
Co-bpy/H-OMMZ | 585 | 391 | 4.2 | 0.12 | 0.54 | 106 | 9.3 | 15.1 | 60.4 |
Sample | H2 consumptiona (mmol g-1) | Reduction degree a (%) | Adsorbed H2b (cm3 g-1) | Dispersityb (%) | Mean Co sizec (nm) | |
---|---|---|---|---|---|---|
fresh | usede | |||||
Co-acet/Na-bulky ZSM-5 | 3.7 | 83.1 | 1.7 | 9.0 | 18.4 | 23.3 |
Co-acet/Na-meso-ZSM-5 | 3.4 | 80.6 | 4.2 | 23.5 | 13.6 | 19.3 |
Co-bpy/Na-meso-ZSM-5 | 3.6 | 84.6 | 5.2 | 29.4 | 10.6 | 14.3 |
Co-acet/Na-OMMZ | 1.5 | 35.9 | 0.3 | 1.7 | 0.9d | 3.6(3.8) |
Co-bpy/Na-OMMZ | 1.6 | 39.7 | 0.9 | 5.4 | 2.5d | 3.8(4.0) |
Co-acet/H-bulky ZSM-5 | 3.6 | 83.2 | 4.3 | 23.5 | 17.9 | 22.7 |
Co-acet/H-meso-ZSM-5 | 3.8 | 87.4 | 4.0 | 21.9 | 9.0 | 13.6 |
Co-bpy/H-mes-ZSM-5 | 3.8 | 87.2 | 5.0 | 27.7 | 6.5 | 10.2 |
Co-acet/H-OMMZ | 1.4 | 33.4 | 0.3 | 1.7 | — | 3.4(3.5) |
Co-bpy/H-OMMZ | 1.2 | 27.7 | 0.2 | 1.1 | — | 3.6(3.8) |
Table 2 Chemical adsorptions and Co sizes of various samples of zeolites supported Co NPs.
Sample | H2 consumptiona (mmol g-1) | Reduction degree a (%) | Adsorbed H2b (cm3 g-1) | Dispersityb (%) | Mean Co sizec (nm) | |
---|---|---|---|---|---|---|
fresh | usede | |||||
Co-acet/Na-bulky ZSM-5 | 3.7 | 83.1 | 1.7 | 9.0 | 18.4 | 23.3 |
Co-acet/Na-meso-ZSM-5 | 3.4 | 80.6 | 4.2 | 23.5 | 13.6 | 19.3 |
Co-bpy/Na-meso-ZSM-5 | 3.6 | 84.6 | 5.2 | 29.4 | 10.6 | 14.3 |
Co-acet/Na-OMMZ | 1.5 | 35.9 | 0.3 | 1.7 | 0.9d | 3.6(3.8) |
Co-bpy/Na-OMMZ | 1.6 | 39.7 | 0.9 | 5.4 | 2.5d | 3.8(4.0) |
Co-acet/H-bulky ZSM-5 | 3.6 | 83.2 | 4.3 | 23.5 | 17.9 | 22.7 |
Co-acet/H-meso-ZSM-5 | 3.8 | 87.4 | 4.0 | 21.9 | 9.0 | 13.6 |
Co-bpy/H-mes-ZSM-5 | 3.8 | 87.2 | 5.0 | 27.7 | 6.5 | 10.2 |
Co-acet/H-OMMZ | 1.4 | 33.4 | 0.3 | 1.7 | — | 3.4(3.5) |
Co-bpy/H-OMMZ | 1.2 | 27.7 | 0.2 | 1.1 | — | 3.6(3.8) |
Fig. 2. Co 2p XPS spectra of Co catalysts supported on Na-type MFI (a) and H-type MFI zeolites (b). H2-TPR of Co based catalysts supported on Na-type MFI (c) and H-type MFI zeolites (d).
Fig. 4. FTS performance over Co-based catalysts with Na- and H-type MFI zeolites supports. CO Conversion and selectivity of gasoline (C5-C11), jet (C8-C16) and diesel (C10-C20) (a); and distributions of carbon number in the products on different Na-(b1,2) and H-type MFI zeolites supports (c1,2). Co loading = 10 wt%, Si/Al = 100. Reaction conditions: T = 513?K, P = 2.0?MPa, H2/CO = 1.0, flow rate = 20 mL min-1, GHSV = 3600 mL gcat-1 h-1, time on stream = 10?h. The hydrocarbon selectivity was calculated by the weight fraction of target product with respect to the total hydrocarbons.
Fig. 5. Catalytic performance syngas conversion on Co-bpy/Na-OMMZ (8.8 wt% Co) at different reaction temperature (a) and different GHSVs (b). Reaction conditions: H2/CO = 1, P = 2.0 MPa; (a) GHSV = 3600 mL gcat-1 h-1; (b) T = 513 K; time on stream = 10 h.
Catalyst | CO conv.a (%) | Hydrocarbon selectivity (%) | Ciso/Cna | Colefinsb (%) | CO2 | Alcohols | CTY (molCO kgCo-1 h-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2-C4 | C5-C20 | C21+ | (%) | (%) | |||||
Co-acet/Na-bulky ZSM-5 | 10.1 | 5.2 | 13.1 | 66.3 | 15.4 | 0.3 | 27.7 | 4.3 | 7.6 | 78 |
Co-acet/Na-meso-ZSM-5 | 21.9 | 3.1 | 6.4 | 64.7 | 25.8 | 0.1 | 30.8 | 6.5 | 4.6 | 178 |
Co-bpy/Na-meso-ZSM-5 | 22.5 | 2.6 | 4.9 | 65.9 | 26.6 | 0.04 | 28.0 | 4.1 | 4.5 | 185 |
Co-acet/Na-OMMZ | 35.9 | 7.5 | 6.9 | 80.4 | 5.2 | 1.1 | 32.7 | 2.1 | 1.0 | 301 |
Co-bpy/Na-OMMZ | 38.2 | 5.8 | 5.1 | 77.3 | 11.8 | 0.6 | 28.0 | 3.6 | 0.9 | 331 |
Co-acet/H-bulky ZSM-5 | 29.7 | 10.2 | 7.7 | 70.3 | 11.8 | 0.4 | 35.6 | 2.4 | 1.4 | 236 |
Co-acet/H-meso-ZSM-5 | 35.1 | 8.5 | 7.9 | 76.4 | 7.2 | 1.1 | 38.0 | 5.5 | 0.7 | 279 |
Co-bpy/H-meso-ZSM-5 | 37.7 | 7.6 | 7.7 | 77.3 | 7.4 | 0.9 | 31.3 | 1.6 | 0.7 | 303 |
Co-acet/H-OMMZ | 34.0 | 7.1 | 6.4 | 86.5 | — | 3.0 | 35.2 | 1.5 | 0.1 | 273 |
Co-bpy/H-OMMZ | 31.5 | 5.7 | 5.5 | 88.8 | — | 3.8 | 22.1 | 0.6 | 0.1 | 258 |
Table 3 Catalytic performances of Co based catalysts supported on different MFI zeolites.
Catalyst | CO conv.a (%) | Hydrocarbon selectivity (%) | Ciso/Cna | Colefinsb (%) | CO2 | Alcohols | CTY (molCO kgCo-1 h-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2-C4 | C5-C20 | C21+ | (%) | (%) | |||||
Co-acet/Na-bulky ZSM-5 | 10.1 | 5.2 | 13.1 | 66.3 | 15.4 | 0.3 | 27.7 | 4.3 | 7.6 | 78 |
Co-acet/Na-meso-ZSM-5 | 21.9 | 3.1 | 6.4 | 64.7 | 25.8 | 0.1 | 30.8 | 6.5 | 4.6 | 178 |
Co-bpy/Na-meso-ZSM-5 | 22.5 | 2.6 | 4.9 | 65.9 | 26.6 | 0.04 | 28.0 | 4.1 | 4.5 | 185 |
Co-acet/Na-OMMZ | 35.9 | 7.5 | 6.9 | 80.4 | 5.2 | 1.1 | 32.7 | 2.1 | 1.0 | 301 |
Co-bpy/Na-OMMZ | 38.2 | 5.8 | 5.1 | 77.3 | 11.8 | 0.6 | 28.0 | 3.6 | 0.9 | 331 |
Co-acet/H-bulky ZSM-5 | 29.7 | 10.2 | 7.7 | 70.3 | 11.8 | 0.4 | 35.6 | 2.4 | 1.4 | 236 |
Co-acet/H-meso-ZSM-5 | 35.1 | 8.5 | 7.9 | 76.4 | 7.2 | 1.1 | 38.0 | 5.5 | 0.7 | 279 |
Co-bpy/H-meso-ZSM-5 | 37.7 | 7.6 | 7.7 | 77.3 | 7.4 | 0.9 | 31.3 | 1.6 | 0.7 | 303 |
Co-acet/H-OMMZ | 34.0 | 7.1 | 6.4 | 86.5 | — | 3.0 | 35.2 | 1.5 | 0.1 | 273 |
Co-bpy/H-OMMZ | 31.5 | 5.7 | 5.5 | 88.8 | — | 3.8 | 22.1 | 0.6 | 0.1 | 258 |
Fig. 6. Time on stream (a) and products distribution (b) of Co based catalysts supported on OMMZ after 120 h. Reaction conditions: H2/CO = 1, P = 2.0 MPa, T = 513 K, GHSV = 3600 mL gcat-1 h-1, time on stream = 120 h.
Fig. 7. HAADF-SETM images of used Co based catalysts for syngas conversion. Used Co-acet/Na-OMMZ after 10 h (a1) and 120 h (a2), used Co-bpy/Na-OMMZ after 10 h (b1) and 120 h (b2).
Fig. 8. XRD patterns (a1,b1) and Co 2p XPS spectra (a2,b2) of used Co based catalysts supported on Na-OMMZ and H-OMMZ for syngas conversion after 10 and 120 h.
|
[1] | Yaojia Cheng, Haoqiang Song, Jingkun Yu, Jiangwei Chang, Geoffrey I. N. Waterhouse, Zhiyong Tang, Bai Yang, Siyu Lu. Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2443-2452. |
[2] | Junhui Liu, Yakun Song, Xuming Guo, Chunshan Song, Xinwen Guo. Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons [J]. Chinese Journal of Catalysis, 2022, 43(3): 731-754. |
[3] | Renyang Zheng, Zaiku Xie. Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2141-2148. |
[4] | Mudassar Javed, Shilin Cheng, Guihua Zhang, Cederick Cyril Amoo, Jingyan Wang, Peng Lu, Chengxue Lu, Chuang Xing, Jian Sun, Noritatsu Tsubaki. A facile solvent-free synthesis strategy for Co-imbedded zeolite-based Fischer-Tropsch catalysts for direct gasoline production [J]. Chinese Journal of Catalysis, 2020, 41(4): 604-612. |
[5] | Zhibiao Shi, Haiyan Yang, Peng Gao, Xinqing Chen, Hongjiang Liu, Liangshu Zhong, Hui Wang, Wei Wei, Yuhan Sun. Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons [J]. Chinese Journal of Catalysis, 2018, 39(8): 1294-1302. |
[6] | Lei Tang, Xiao-Ling Dong, Wei Xu, Lei He, An-Hui Lu. Iron-based catalysts encapsulated by nitrogen-doped graphitic carbon for selective synthesis of liquid fuels through the Fischer-Tropsch process [J]. Chinese Journal of Catalysis, 2018, 39(12): 1971-1979. |
[7] | Xinhua Gao, Jianli Zhang, Ning Chen, Qingxiang Ma, Subing Fan, Tiansheng Zhao, Noritatsu Tsubaki. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process [J]. Chinese Journal of Catalysis, 2016, 37(4): 510-516. |
[8] | Xiaoqi Chen, Dehui Deng, Xiulian Pan, Xinhe Bao. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637. |
[9] | Ali Nakhaei Pour, Elham Hosaini, Mohammad Izadyar, Mohammad Reza Housaindokht. Particle size effects in Fischer-Tropsch synthesis by Co catalyst supported on carbon nanotubes [J]. Chinese Journal of Catalysis, 2015, 36(8): 1372-1378. |
[10] | Yanpeng Pei, Yunjie Ding, Hejun Zhu, Hong Du. One-step production of C1-C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2 [J]. Chinese Journal of Catalysis, 2015, 36(3): 355-361. |
[11] | Yanpeng Pei, Yunjie Ding, Juan Zang, Xiangen Song, Wenda Dong, Hejun Zhu, Tao Wang, Weimiao Chen. Fischer-Tropsch synthesis: Characterizing and reaction testing of Co2C/SiO2 and Co2C/Al2O3 catalysts [J]. Chinese Journal of Catalysis, 2015, 36(2): 252-259. |
[12] | Daniel E. Resasco. Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems [J]. Chinese Journal of Catalysis, 2014, 35(6): 798-806. |
[13] | Xuefen Li, Fenghua Bai, Haiquan Su. Cobalt-based catalysts derived from cobalt carbonyl clusters for Fischer-Tropsch synthesis [J]. Chinese Journal of Catalysis, 2014, 35(3): 342-350. |
[14] | Lifeng Chen, Weilin Song, Yahong Zhang, Weimin Yang, Lianghua Wu, Yi Tang. Nanowire accumulated Fe2O3/SiO2 spherical catalyst for Fischer-Tropsch synthesis [J]. Chinese Journal of Catalysis, 2014, 35(10): 1661-1668. |
[15] | Bingyin Wang, Xiaohu Yu, Chunfang Huo, Jianguo Wang, Yongwang Li. Density functional theory study of the adsorption and reaction of C2H4 on Fe3C(100) [J]. Chinese Journal of Catalysis, 2014, 35(1): 28-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||