Chinese Journal of Catalysis ›› 2025, Vol. 68: 230-245.DOI: 10.1016/S1872-2067(24)60187-7
• Articles • Previous Articles Next Articles
Shaolei Gaoa,b, Peng Luc, Liang Qia,*(), Yingli Wanga, Hua Lia, Mao Yea, Valentin Valtchevd, Alexis T. Belle,f, Zhongmin Liua,b,*(
)
Received:
2024-10-23
Accepted:
2024-11-25
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: Supported by:
Shaolei Gao, Peng Lu, Liang Qi, Yingli Wang, Hua Li, Mao Ye, Valentin Valtchev, Alexis T. Bell, Zhongmin Liu. Dimethoxymethane carbonylation and disproportionation over extra-large pore zeolite ZEO-1: Reaction network and mechanism[J]. Chinese Journal of Catalysis, 2025, 68: 230-245.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60187-7
Fig. 1. The DMM conversion pathways for the production of MEG, GA, MG, and MF from syngas. DMM carbonylation process for new C?C bond formation is outlined in blue.
Fig. 2. Crystal structure and physical properties of ZEO-1 zeolite. XRD pattern (a), N2 adsorption-desorption isotherms (b), and low and high-resolution TEM images (c,d) of ZEO-1 zeolite.
Fig. 3. DMM disproportionation over ZEO-1 as a function of reaction temperature (a,b), space velocity (c,d), and DMM partial pressure (e,f). Reaction conditions: (a,b): 0.05 g ZEO-1, 343?423 K, PDMM = 27 kPa, space velocity = 36 L gcat?1 h?1 at total pressure of 1 MPa (balanced with N2); (c,d): 0.05 g ZEO-1, 373 K, PDMM= 17 kPa, space velocity = 36-108 L gcat?1 h?1 at total pressure of 1 MPa (balanced with N2); (e,f): 0.05 g ZEO-1, 373 K, PDMM= 10?27 kPa, space velocity = 36 L gcat?1 h?1 at total pressure of 1 MPa (balanced with N2).
Fig. 4. DMM carbonylation and disproportionation over ZEO-1 as a function of reaction temperature (a,b), total pressure (c,d) and space velocity (e,f). Reaction conditions: (a,b) 0.05 g zeolite, 373?443 K, PDMM = 43 kPa, space velocity = 36 L gcat?1 h?1 at 3 MPa; (c,d) 0.05 g zeolite, 383 K, PDMM = 14.3?43 kPa, space velocity = 36 L gcat?1 h?1 at 1-3 MPa; (e,f) 0.02 g zeolite, 383 K, PDMM = 43 kPa, space velocity = 45?360 L gcat?1 h?1 at 3 MPa.
Fig. 5. Dependence of the rates of DMM carbonylation to MMAc and disproportionation to MF over ZEO-1 measured at 353?373 K, on the CO partial pressure (a,c) and DMM partial pressure (b,d). Reaction conditions: (a,c) 0.0065 g ZEO-1, 373 K, PDMM = 43 kPa, PCO = 0.74?2.96 MPa at total pressure of 3 MPa, (b,d) 0.0113 g ZEO-1, 353 K, PDMM = 27?52 kPa at total pressure of 3 MPa.
Fig. 6. Comparison of DMM carbonylation activity over ZEO-1 and FAU under low conversion. For ZEO-1: 0.01 g ZEO-1, 373 K, PDMM = 43 kPa, GHSV = 360 L gcat?1 h?1 at 2 MPa. For FAU (Si/Al = 15): 0.05 g FAU, 373 K, PDMM = 43 kPa, GHSV = 240 L gcat?1 h?1 at 2 MPa. For FAU (Si/Al = 30): 0.02 g FAU, 373 K, PDMM = 43 kPa, GHSV = 600 L gcat?1 h?1 at 2 MPa.
Fig. 7. DMM carbonylation over ZEO-1 and FAU (Si/Al = 30). Reaction conditions: 0.1 g zeolite, 383 K, PDMM = 14 kPa, space velocity = 18 L gcat?1 h?1 at 5 MPa.
Fig. 8. Schematic illustration for the formation of MMZ via the interaction of DMM with Br?nsted acid sites over zeolite (a), MAZ via CO insertion into MMZ (b), and MFZ via a hydrogen transfer reaction between DMM and MMZ (c).
Fig. 9. (a) IR spectrum of surface hydroxyl groups on ZEO-1. In-situ IR spectra of ZEO-1 exposed to 8 kPa DMM/Ar (b,c) and Ar purge after DMM/Ar (d,e). (f) Plots of the IR intensity representing CH2/CH3 versus purging time. Conditions: 0.015 g ZEO-1, 383 K, 100 mL min-1 total flow rate at a total pressure of 0.4 MPa.
Fig. 10. In-situ IR spectra of ZEO-1 collected during exposed to 8 kPa DMM/Ar (a), Ar purging after DMM/Ar (b), exposed to 8 kPa DMM/CO (c) and Ar purging after DMM/CO (d). Conditions: 0.0157 g ZEO-1 for (a,b) and 0.0140 g ZEO-1 for (c,d), 383 K, 100 mL min-1 total flow rate at total pressure of 0.5 MPa.
Wavenumber (cm‒1) | Assignment | (Area/μmolBrönsted acid) | |||
---|---|---|---|---|---|
FAU f | ZEO-1 f | FAU g | ZEO-1 g | ||
1766 a | MF | 0.137 | 0.158 | — | — |
1759 b | MMAc | — | — | 8.06 | 3.30 |
1753 c | MF | 0.0263 | 0.0216 | — | — |
1744 d | MAZ | — | — | 10.29 | 8.21 |
1733/1736 e | MFZ | 0.388 | 0.711 | — | — |
Table 1 The assignment and area of IR peaks for FAU (Si/Al = 30) and ZEO-1 with identical feed compositions.
Wavenumber (cm‒1) | Assignment | (Area/μmolBrönsted acid) | |||
---|---|---|---|---|---|
FAU f | ZEO-1 f | FAU g | ZEO-1 g | ||
1766 a | MF | 0.137 | 0.158 | — | — |
1759 b | MMAc | — | — | 8.06 | 3.30 |
1753 c | MF | 0.0263 | 0.0216 | — | — |
1744 d | MAZ | — | — | 10.29 | 8.21 |
1733/1736 e | MFZ | 0.388 | 0.711 | — | — |
Fig. 11. In-situ IR spectra of FAU (Si/Al = 30) collected during exposed to 8 kPa DMM/Ar (a) and 8 kPa DMM/CO (b), respectively. Conditions: 0.0115 g FAU for (a) and 0.0134 g FAU for (b), 383 K, 100 mL min?1 total flow rate at total pressure of 0.5 MPa.
Fig. 12. In-situ IR spectrum of ZEO-1 collected during exposed to 8 kPa DMM/13CO. Conditions: 0.015 g ZEO-1, 383 K, 25 mL min?1 total flow rate at total pressure of 0.1 MPa.
Fig. 13. Proposed mechanism for DMM carbonylation and disproportionation over different active sites in ZEO-1 [2,14]. The blue dashed square demonstrates the reaction cycle over DMM carbonylation active site (Site 1), and the orange dashed square demonstrates the reaction cycle over DMM disproportionation active site (Site 2).
Fig. 14. DMM carbonylation and disproportionation apparent activation energy of ZEO-1 exposed to DMM/CO. Reaction conditions: 0.008 g ZEO-1, 363?383 K, PDMM = 43 kPa, GHSV = 750 L gcat?1 h?1 at 2 MPa.
Fig. 15. DMM carbonylation and disproportionation apparent activation energy of FAU (Si/Al = 30) exposed to DMM/CO. Reaction conditions: 0.01 g FAU, 353?383 K, PDMM = 43 kPa, GHSV = 300-1200 L gcat?1 h?1 at 2 MPa.
|
[1] | Neng Gong, Quanzheng Deng, Yujiao Wang, Zitao Wang, Lu Han, Peng Wu, Shun’ai Che. Co nanoparticles confined in mesopores of MFI zeolite for selective syngas conversion to heavy liquid hydrocarbon fuels [J]. Chinese Journal of Catalysis, 2025, 68(1): 246-258. |
[2] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[3] | Chenyu Du, Jianping Sheng, Fengyi Zhong, Ye He, Vitaliy P. Guro, Yanjuan Sun, Fan Dong. Rational design and mechanistic insights of advanced photocatalysts for CO2-to-C2+ production: Status and challenges [J]. Chinese Journal of Catalysis, 2024, 60(5): 25-41. |
[4] | Ke Huang, Shicheng Yuan, Rongyan Mei, Ge Yang, Peng Bai, Hailing Guo, Chunzheng Wang, Svetlana Mintova. Mo-promoted Pd/NaY catalyst for indirect oxidative carbonylation of methanol to dimethyl carbonate [J]. Chinese Journal of Catalysis, 2024, 60(5): 327-336. |
[5] | Dmitry Yu. Murzin. Synergy between heterogeneous catalysis and homogeneous radical reactions for pharmaceutical waste destruction: Perspective [J]. Chinese Journal of Catalysis, 2024, 58(3): 7-14. |
[6] | Jian Dang, Weijie Li, Bin Qin, Yuchao Chai, Guangjun Wu, Landong Li. Self-adjusted reaction pathway enables efficient oxidation of aromatic C-H bonds over zeolite-encaged single-site cobalt catalyst [J]. Chinese Journal of Catalysis, 2024, 57(2): 133-142. |
[7] | Yanling Yang, Peijie Han, Yuanbao Zhang, Jingdong Lin, Shaolong Wan, Yong Wang, Haichao Liu, Shuai Wang. Site requirements of supported W2C nanocatalysts for efficient hydrodeoxygenation of m-cresol to aromatics [J]. Chinese Journal of Catalysis, 2024, 67(12): 91-101. |
[8] | Tianming Zai, Wei Chen, Jiamin Yuan, Ye Ma, Qinming Wu, Xianfeng Yi, Zhiqiang Liu, Xiangju Meng, Weiliao Liu, Na Sheng, Han Wang, Anmin Zheng, Feng-Shou Xiao. Silicalite-1 zeolite nanosheets with rich H-bonded silanols for boosting vapor-phase Beckmann rearrangement: One-pot synthesis and theoretical investigation [J]. Chinese Journal of Catalysis, 2024, 67(12): 82-90. |
[9] | Haodi Wang, Feng Jiao, Jingyao Feng, Yuting Sun, Guangjin Hou, Xiulian Pan, Xinhe Bao. Role of extra-framework aluminum species within MOR zeolites for syngas conversion via OXZEO catalysis [J]. Chinese Journal of Catalysis, 2024, 67(12): 135-143. |
[10] | Shugang Sun, Yang Zhu, Letian Hong, Xuebing Li, Yu Gu, Hui Shi. Interplay of solvent and metal identity determines rates and stereoselectivities in M(IV)-Beta-catalyzed intramolecular Prins cyclization of citronellal [J]. Chinese Journal of Catalysis, 2024, 66(11): 233-246. |
[11] | Siyu Chen, Jingqi Guan. Structural regulation strategies of nitrogen reduction electrocatalysts [J]. Chinese Journal of Catalysis, 2024, 66(11): 20-52. |
[12] | Hao Liu, Bingxian Chu, Tianxiang Chen, Jie Zhou, Lihui Dong, Tsz Woon Benedict Lo, Bin Li, Xiaohui He, Hongbing Ji. Modulation of the cobalt species state on zincosilicate to maximize propane dehydrogenation to propylene [J]. Chinese Journal of Catalysis, 2024, 66(11): 168-180. |
[13] | Hyun Sub Kim, Hwangho Lee, Hongbeom Park, Inhak Song, Do Heui Kim. Understanding the roles of Brønsted/Lewis acid sites on manganese oxide-zeolite hybrid catalysts for low-temperature NH3-SCR [J]. Chinese Journal of Catalysis, 2024, 65(10): 79-88. |
[14] | Kai Fan, Qinming Wu, Shuo Liu, Haiyu Kong, Sen Wang, Eduard Kunkes, Trees De Baerdemaeker, Andrei-Nicolae Parvulescu, Nils Bottke, Toshiyuki Yokoi, Dirk E. De Vos, Xiangju Meng, Weiping Zhang, Feng-Shou Xiao. Adjusting Al location in the framework of ITH zeolites for catalytic conversion of methanol to olefins [J]. Chinese Journal of Catalysis, 2024, 56(1): 114-121. |
[15] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||