Chinese Journal of Catalysis ›› 2024, Vol. 66: 233-246.DOI: 10.1016/S1872-2067(24)60122-1
• Articles • Previous Articles Next Articles
Shugang Suna,1, Yang Zhua,1, Letian Honga, Xuebing Lib, Yu Gua,*(), Hui Shia,*(
)
Received:
2024-07-25
Accepted:
2024-08-27
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: About author:
1Contributed equally to this work.
Supported by:
Shugang Sun, Yang Zhu, Letian Hong, Xuebing Li, Yu Gu, Hui Shi. Interplay of solvent and metal identity determines rates and stereoselectivities in M(IV)-Beta-catalyzed intramolecular Prins cyclization of citronellal[J]. Chinese Journal of Catalysis, 2024, 66: 233-246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60122-1
Scheme 1. Intramolecular Prins cyclization of (+)-citronellal, with the most useful stereoisomer (-)-isopulegol and its subsequent hydrogenation product (-)-menthol highlighted in red.
Sample | SBET (m2 g−1) | Total pore volume (cm3 g−1) | Micropore volume (cm3 g−1) | Si/M a | Active sites b (μmol g−1) | Acid sites c | ΦIR d | |
---|---|---|---|---|---|---|---|---|
Lewis acidity (μmol g−1) | Brønsted acidity (μmol g−1) | |||||||
Ti-Beta | 583 | 0.31 | 0.21 | 97 | 47 | 119 | n.d.e | 0.13 |
Zr-Beta | 590 | 0.34 | 0.21 | 51 | 122 | 214 | n.d.e | 0.18 |
Hf-Beta | 577 | 0.31 | 0.21 | 106 | 38 | 100 | n.d.e | 0.19 |
Sn-Beta | 536 | 0.35 | 0.19 | 251 | 51 | 50 | n.d.e | 0.17 |
Table 1 Textural properties, elemental composition, acid site/active site quantification data and relative densities of hydrogen-bonded silanols for the studied M-Beta samples.
Sample | SBET (m2 g−1) | Total pore volume (cm3 g−1) | Micropore volume (cm3 g−1) | Si/M a | Active sites b (μmol g−1) | Acid sites c | ΦIR d | |
---|---|---|---|---|---|---|---|---|
Lewis acidity (μmol g−1) | Brønsted acidity (μmol g−1) | |||||||
Ti-Beta | 583 | 0.31 | 0.21 | 97 | 47 | 119 | n.d.e | 0.13 |
Zr-Beta | 590 | 0.34 | 0.21 | 51 | 122 | 214 | n.d.e | 0.18 |
Hf-Beta | 577 | 0.31 | 0.21 | 106 | 38 | 100 | n.d.e | 0.19 |
Sn-Beta | 536 | 0.35 | 0.19 | 251 | 51 | 50 | n.d.e | 0.17 |
Fig. 1. IR spectra of adsorbed pyridine (upon saturation of surface acid sites and evacuation to remove gaseous or physisorbed pyridine) on dehydrated M-Beta samples (a) and freshly activated M-Beta samples (b). All spectra have been normalized against the ν(Si?O?Si) overtone at 1870 cm?1, assumed to have an identical molar extinction coefficient for all samples. Spectra are vertically offset for clarity.
Catalyst | Solvent | Conv. (%) | Yieldpulegol b (%) | Sel.pulegol b (%) | Stereosel.IPL c (%) |
---|---|---|---|---|---|
Ti-Beta | acetonitrile | 26.8 | 26.3 | 98.1 | 60 |
Zr-Beta | acetonitrile | 98.9 | 97.6 | 98.7 | 84 |
Hf-Beta | acetonitrile | 96.2 | 96.2 | 100 | 85 |
Sn-Beta | acetonitrile | 97.6 | 95.3 | 97.6 | 78 |
Ti-Beta | cyclohexane | 99.9 | 98.4 | 98.5 | 74 |
Zr-Beta | cyclohexane | 98.4 | 97.6 | 99.2 | 87 |
Hf-Beta | cyclohexane | 99.7 | 99.7 | 100 | 83 |
Sn-Beta | cyclohexane | 97.5 | 97.1 | 99.5 | 71 |
Ti-Beta | tert-Butanol | 98.5 | 93.1 | 94.5 | 80 |
Zr-Beta | tert-Butanol | 94.4 | 94.4 | 100 | 91 |
Hf-Beta | tert-Butanol | 98.3 | 98.3 | 100 | 91 |
Sn-Beta | tert-Butanol | 98.4 | 98.4 | 100 | 90 |
Table 2 Cyclization reactions of (±) citronellal on M-Beta catalysts in three distinct solvents a.
Catalyst | Solvent | Conv. (%) | Yieldpulegol b (%) | Sel.pulegol b (%) | Stereosel.IPL c (%) |
---|---|---|---|---|---|
Ti-Beta | acetonitrile | 26.8 | 26.3 | 98.1 | 60 |
Zr-Beta | acetonitrile | 98.9 | 97.6 | 98.7 | 84 |
Hf-Beta | acetonitrile | 96.2 | 96.2 | 100 | 85 |
Sn-Beta | acetonitrile | 97.6 | 95.3 | 97.6 | 78 |
Ti-Beta | cyclohexane | 99.9 | 98.4 | 98.5 | 74 |
Zr-Beta | cyclohexane | 98.4 | 97.6 | 99.2 | 87 |
Hf-Beta | cyclohexane | 99.7 | 99.7 | 100 | 83 |
Sn-Beta | cyclohexane | 97.5 | 97.1 | 99.5 | 71 |
Ti-Beta | tert-Butanol | 98.5 | 93.1 | 94.5 | 80 |
Zr-Beta | tert-Butanol | 94.4 | 94.4 | 100 | 91 |
Hf-Beta | tert-Butanol | 98.3 | 98.3 | 100 | 91 |
Sn-Beta | tert-Butanol | 98.4 | 98.4 | 100 | 90 |
Fig. 2. Conversion of citronellal (filled circles, left ordinate) and diastereoselectivity to isopulegol (IPL, empty triangles, right ordinate) over M-Beta catalysts in acetonitrile (a), cyclohexane (b) and tert-butanol (c). Reaction conditions: 1.0 g of (±) citronellal, 60 mL solvent, 250 mg of catalyst, 1000 r min?1, 333 K. Dashed lines only represent trends.
Fig. 4. Turnover rates (normalized to the active site densities determined by in situ titration) for (±)-citronellal conversion as a function of its concentration over M-Beta catalysts in acetonitrile (a), tert-butanol (b), cyclohexane (c) and n-hexane (d) at 333 K. The lines represent the regressed best fits to Eq. (1).
Solvent | Catalyst | Kads (L mol-1) | kcyc a (molCIT/IPL molLAS min-1) |
---|---|---|---|
Acetonitrile | Ti-Beta | 16±6 (11±2) | 4±1 (4±2) |
Zr-Beta | 10±2 (7±1) | 60±3 (53±3) | |
Hf-Beta | 6±3 (6±3) | 215±64 (178±48) | |
Sn-Beta | 49±9 (50±10) | 35±2 (25±1) | |
tert-Butanol | Ti-Beta | 4±0.4 (5±0.3) | 140±5 (100±2) |
Zr-Beta | 10±2 (11±2) | 33±2 (30±2) | |
Hf-Beta | 26±9 (35±10) | 37±3 (32±2) | |
Sn-Beta | 17±5 (19±5) | 40±3 (36±2) | |
Cyclohexane | Ti-Beta | 2±0.5 (4±1) | 79 ±14 (36±5) |
Zr-Beta | 48±8 (57±17) | 4±0.2 (3±0.2) | |
Hf-Beta | 22±6 (20±6) | 7±0.5 (6±0.5) | |
Sn-Beta | 3±1 (5±2) | 15±5 (7±1) | |
n-Hexane | Ti-Beta | 91±19 (99±20) | 101±5 (72±4) |
Zr-Beta | 49±10 (47±10) | 41±2 (35±2) | |
Hf-Beta | 63±5 (49±15) | 99±2 (94±7) | |
Sn-Beta | 48±29 (54±32) | 71±11 (50±7) |
Table 3 Regressed kinetic and thermodynamic parameters (to Eq. (1)) from the reaction data measured (shown in Fig. 4) over M-Beta catalysts in different solvents at 333 K.
Solvent | Catalyst | Kads (L mol-1) | kcyc a (molCIT/IPL molLAS min-1) |
---|---|---|---|
Acetonitrile | Ti-Beta | 16±6 (11±2) | 4±1 (4±2) |
Zr-Beta | 10±2 (7±1) | 60±3 (53±3) | |
Hf-Beta | 6±3 (6±3) | 215±64 (178±48) | |
Sn-Beta | 49±9 (50±10) | 35±2 (25±1) | |
tert-Butanol | Ti-Beta | 4±0.4 (5±0.3) | 140±5 (100±2) |
Zr-Beta | 10±2 (11±2) | 33±2 (30±2) | |
Hf-Beta | 26±9 (35±10) | 37±3 (32±2) | |
Sn-Beta | 17±5 (19±5) | 40±3 (36±2) | |
Cyclohexane | Ti-Beta | 2±0.5 (4±1) | 79 ±14 (36±5) |
Zr-Beta | 48±8 (57±17) | 4±0.2 (3±0.2) | |
Hf-Beta | 22±6 (20±6) | 7±0.5 (6±0.5) | |
Sn-Beta | 3±1 (5±2) | 15±5 (7±1) | |
n-Hexane | Ti-Beta | 91±19 (99±20) | 101±5 (72±4) |
Zr-Beta | 49±10 (47±10) | 41±2 (35±2) | |
Hf-Beta | 63±5 (49±15) | 99±2 (94±7) | |
Sn-Beta | 48±29 (54±32) | 71±11 (50±7) |
Fig. 5. Ratio of the first-order rate constant (Kadskcyc in Eq. (1)) in a given solvent relative to that in n-hexane (a) and corresponding differences in the free energy of activation (at 333 K) in the first-order kinetic regime between each solvent and n-hexane (b).
Fig. 6. Ratio of the zero-order rate constant (kcyc in Eq. (1)) in a given solvent relative to that in n-hexane (a) and corresponding differences in the intrinsic free energy of activation (ΔGint? at 333 K) between each solvent and n-hexane (b).
Scheme 2. Proposed elementary steps for citronellal (CIT) cyclization to isopulegol (IPL) over M-Beta catalysts in different solvents. Black arrows denote steps that occur on sites not covered with solvent molecules (as in the case of n-hexane and cyclohexane), green arrows denote steps that occur on sites where acetonitrile (ACN) is (co-)adsorbed, and blue arrows denote steps that occur on sites where tert-butanol (TBO) is (co-)adsorbed. Bidirectional arrows with an oval on top indicate quasi-equilibrated steps with the designated equilibrium constants, whereas unidirectional arrows with a ‘?’ symbol indicate the kinetically relevant step in each catalytic cycle (black, blue and green).
|
[1] | Liping Yang, Jiacheng Xing, Danhua Yuan, Lin Li, Yunpeng Xu, Zhongmin Liu. Synthesis of high-crystallinity MIL-125 with outstanding xylene isomer separation performance [J]. Chinese Journal of Catalysis, 2021, 42(12): 2313-2321. |
[2] | Yuanyuan Jiang, Ruru Zhou, Huaiyuan Zhao, Boyong Ye, Yihua Long, Zhengbao Wang, Zhaoyin Hou. A highly active and stable organic-inorganic combined solid acid for the transesterification of glycerol under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(10): 1772-1781. |
[3] | Bin Guo, Lulu He, Gangfeng Tang, Li Zhang, Lin Ye, Bin Yue, Shik Chi Edman Tsang, Heyong He. Dehydration of sugars to 5-hydroxymethylfurfural and non-stoichiometric formic and levulinic acids over mesoporous Ta and Ta-W oxide solid acid catalysts [J]. Chinese Journal of Catalysis, 2020, 41(8): 1248-1260. |
[4] | Fei Li, Congying Xu, Xiaohong Wang, Yong Wang, Jian Du, Licheng Sun. Visible light-driven oxygen evolution using a binuclear Ru-bda catalyst [J]. Chinese Journal of Catalysis, 2018, 39(3): 446-452. |
[5] | Xiaxia Bai, Liuyi Pan, Peng Zhao, Daidi Fan, Wenhong Li. A new solid acid SO42-/TiO2 catalyst modified with tin to synthesize 1,6-hexanediol diacrylate [J]. Chinese Journal of Catalysis, 2016, 37(9): 1469-1476. |
[6] | Yue Shen, Yuru Kang, Jiankui Sun, Chao Wang, Bo Wang, Feng Xu, Runcang Sun. Efficient production of 5-hydroxymethylfurfural from hexoses using solid acid SO42-/In2O3-ATP in a biphasic system [J]. Chinese Journal of Catalysis, 2016, 37(8): 1362-1368. |
[7] | Meixia Zhao, Xianyong Wei, Zhimin Zong. Preparation of a new solid acid and its catalytic performance in di(1-naphthyl)methane hydrocracking [J]. Chinese Journal of Catalysis, 2016, 37(8): 1324-1330. |
[8] | Zhongkui Zhao, Jinfeng Ran, Yongle Guo, Boyuan Miao, Guiru Wang. Tuning of the textural features and acidic properties of sulfated mesoporous lanthana-zirconia solid acid catalysts for alkenylation of diverse aromatics to their corresponding α-arylstyrenes [J]. Chinese Journal of Catalysis, 2016, 37(8): 1303-1313. |
[9] | Wei Xue, Hepan Zhao, Jie Yao, Fang Li, Yanji Wang . Esterification of cyclohexene with formic acid over a peanut shell-derived carbon solid acid catalyst [J]. Chinese Journal of Catalysis, 2016, 37(5): 769-777. |
[10] | Toru Murayama, Masatake Haruta. Preparation of gold nanoparticles supported on Nb2O5 by deposition precipitation and deposition reduction methods and their catalytic activity for CO oxidation [J]. Chinese Journal of Catalysis, 2016, 37(10): 1694-1701. |
[11] | Kexing Zeng, Zhipeng Huang, Jie Yang, Yanlong Gu. Silica-supported policresulen as a solid acid catalyst for organic reactions [J]. Chinese Journal of Catalysis, 2015, 36(9): 1606-1613. |
[12] | Tao Wu, Jingwei Wan, Xuebing Ma . Aqueous asymmetric aldol reaction catalyzed by nanomagnetic solid acid SO42-/Zr(OH)4-Fe3O4 [J]. Chinese Journal of Catalysis, 2015, 36(3): 425-431. |
[13] | Huanwang Jing, Xiaomei Wang, Yong Liu, Anqi Wang. Preparation of magnetic nanocomposites of solid acid catalysts and their applicability in esterification [J]. Chinese Journal of Catalysis, 2015, 36(2): 244-251. |
[14] | Nader Ghaffari Khaligh, Parisa Ghods Ghasem-Abadi. N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solvent-free conditions [J]. Chinese Journal of Catalysis, 2014, 35(7): 1126-1135. |
[15] | V. V. Strelko, S. S. Stavitskaya, Yu. I. Gorlov. Proton catalysis with active carbons and partially pyrolyzed carbonaceous materials [J]. Chinese Journal of Catalysis, 2014, 35(6): 815-823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||