Chinese Journal of Catalysis ›› 2025, Vol. 72: 344-358.DOI: 10.1016/S1872-2067(24)60284-6
• Articles • Previous Articles Next Articles
Rushuo Lia, Tao Bana, Danfeng Zhaoa, Fajie Hua, Jing Lina, Xiubing Huanga,*(), Zhiping Taob,*(
), Ge Wanga,*(
)
Received:
2024-12-15
Accepted:
2025-02-06
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: xiubinghuang@ustb.edu.cn (X. Huang), Taozp.ripp@sinopec.com (Z. Tao), gewang@ustb.edu.cn (G. Wang).
Supported by:
Rushuo Li, Tao Ban, Danfeng Zhao, Fajie Hu, Jing Lin, Xiubing Huang, Zhiping Tao, Ge Wang. Defective UiO-66(Ce) supported Ni nanoparticles with optimized microenvironment and electronic state for efficient olefin hydrogenation reaction[J]. Chinese Journal of Catalysis, 2025, 72: 344-358.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60284-6
Fig. 1. (a) The schematic illustration for the synthesis process of U(Ce)-xeq (x = 0, 10, 20, 30, 40, 50) loaded Ni NPs. SEM and size distribution statistical images of U(Ce)-0eq (b), U(Ce)-10eq (c), U(Ce)-20eq (d), U(Ce)-30eq (e), U(Ce)-40eq (f), and U(Ce)-50eq (g).
Fig. 2. (a) The BDC linker-missing defect number and size distribution tendency chart of U(Ce)-xeq with the increase of FA modulators addition. (b) Schematic illustration for the introduction of BDC linker-missing defects in the U(Ce)-xeq due to introduce different FA modulators. (c) NH3-TPD curves for U(Ce)-40eq and Ni5@U(Ce)-40eq-5. Low-magnification TEM image and size distribution for Ni NPs (d), high-magnification TEM and corresponding interplanar spacing images (e), HAADF-STEM and EDX elemental mapping images (f) of Ni5@U(Ce)-40eq-5.
Fig. 3. (a) DCPD conversion (Con.DCPD) and THDCPD selectivity (Sel.THDCPD) for Ni5@U(Ce)-xeq-5 (x = 0, 10, 20, 30, 40, 50) (90 min, 2 MPa H2, 70 °C). XPS survey (b), Ni 2p XPS spectra (c), and Ce 3d XPS spectra (d) for Ni5@U(Ce)-40eq-5 and Air-Ni5@U(Ce)-40eq-5. Ni 2p XPS spectra (e), and Ce 3d XPS spectra (f) for Ni5@U(Ce)-40eq-5 in different Ar+ etching depths.
Fig. 4. XPS survey (a), Ni 2p XPS spectra (b), and Ce 3d XPS spectra (c) for Ni5@U(Ce)-xeq-5 (x = 0, 10, 20, 30, 40, 50). (d) The ratio of Ce4+/CeTotal, Ni0/NiTotal and Ce3+/CeTotal for Ni5@U(Ce)-xeq-5. (e) Radar image of DCPD hydrogenation performance, defect content, Ni0/NiTotal and Ce4+/CeTotal for Ni5@U(Ce)-xeq-5. (f) XRD patterns of Ni5@U(Ce)-xeq-5.
Fig. 5. Normalized XANES Ce L-edge (a) and Ni K-edge (b) spectra of Ni5@U(Ce)-0eq-5 and Ni5@U(Ce)-40eq-5. (c) Schematic illustration of electron-deficient Ni0 d-orbital and C=C bond orbital electronic configuration. (d) The possible electronic interaction between electron-deficient Ni0 and C=C bond orbital. (e) Schematic diagram of DCPD adsorbed on Ni NPs of Ni5@U(Ce)-40eq-5.
Fig. 6. DCPD conversion (Con.DCPD) and THDCPD selectivity (Sel.THDCPD) (90 min, 2 MPa H2, 70 °C) (a), XRD patterns (b), and FT-IR spectra (c) for Ni5@U(Ce)-40eq-5-H2O, Ni5@U(Ce)-40eq-5-H2O+Hex, Ni5@U(Ce)-40eq-5-EtOH, and Ni5@U(Ce)-40eq-5. (d) SEM image for Ni5@U(Ce)-40eq-5-EtOH. XRD (e) and TEM images (f) for Ni5@U(Ce)-40eq-5-TB. SEM (g) and HAADF-STEM with elemental mapping images (h) for Ni5@CeO2-5.
Fig. 7. DCPD conversion (Con.DCPD) and THDCPD selectivity (Sel.THDCPD) for Niy@U(Ce)-40eq-5 (a) and Ni5@U(Ce)-40eq-z (b) (90 min, 2 MPa H2, 70 °C). XRD pattern (c), XPS survey spectra (d), Ni 2p spectra (e), Ce 3d spectra (f), and the ratio of Ce4+/CeTotal, Ni0/NiTotal and Ce3+/CeTotal (g) for Ni5@U(Ce)-40eq-z. (h) Radar image of DCPD hydrogenation performance, Ni0/NiTotal and Ce4+/CeTotal for Ni5@U(Ce)-40eq-z.
Fig. 8. DCPD hydrogenation performance cycle test (a), XRD pattern (b), Ni 2p XPS spectra (c), and elemental mapping images (d) of AF-Ni5@U(Ce)-40eq-5.
Fig. 9. H2-TPD profiles (a), FT-IR spectra (b,c) of DCPD substrate molecule adsorption on the surface of different samples, respectively. The DCPD hydrogenation performance of Ni5@U(Ce)-40eq-5 under different reaction conditions: different reaction times (30-90 min, 2 MPa H2, 70 °C) (d), different H2 pressures (90 min, 0.5-2 MPa H2, 70 °C) (e), different reaction temperatures (90 min, 2 MPa H2, 40-70 °C) (f). (g) The potential mechanism of DCPD hydrogenation on the surface of Ni5@U(Ce)-40eq-5.
|
[1] | Zhangqian Wei, Mingxiu Wang, Xinnan Lu, Zixuan Zhou, Ziqi Tang, Chunran Chang, Yong Yang, Shenggang Li, Peng Gao. An experimental and computational investigation on structural evolution of the In2O3 catalyst during the induction period of CO2 hydrogenation [J]. Chinese Journal of Catalysis, 2025, 72(5): 301-313. |
[2] | Xiaofei Wang, Yan Li, Mengyun Wang, Yiming Gao, Zhuang Ma, Aiwen Lei, Wu Li. Nickel nanoparticles catalyzed hydrogenation and deuteration for a general amine synthesis [J]. Chinese Journal of Catalysis, 2025, 72(5): 392-401. |
[3] | Liwen Guo, Dao Shi, Tianjun Zhang, Yanhang Ma, Guodong Qi, Jun Xu, Qiming Sun. Unsaturated cobalt single-atoms stabilized by silanol nests of zeolites for efficient propane dehydrogenation [J]. Chinese Journal of Catalysis, 2025, 72(5): 323-333. |
[4] | Jun Ma, Bing Xu, Shuo Cao, Shiyan Li, Wei Chu, Siglinda Perathoner, Gabriele Centi, Yuefeng Liu. Structural dynamics of Ni/Mo2CTx MXene catalysts under reaction modulate CO2 reduction performance [J]. Chinese Journal of Catalysis, 2025, 72(5): 243-253. |
[5] | Jian Dang, Xin Deng, Weijie Li, Di Yang, Guangjun Wu, Landong Li. CO2-promoted ethylbenzene dehydrogenation catalyzed by zeolite-encaged single chromium sites [J]. Chinese Journal of Catalysis, 2025, 71(4): 158-168. |
[6] | Hao Liu, Ying Zhang, Liyang Liu, Tianxiang Chen, Xingcong Zhang, Peng Hu, Chao Xiong, Jie Zhou, Hao Zhang, Lihui Dong, Tsz Woon Benedict Lo, Bing Nan, Xiaohui He, Hongbing Ji. Platinum clusters stabilized by zincosilicate zeolite for efficient propane dehydrogenation [J]. Chinese Journal of Catalysis, 2025, 71(4): 208-219. |
[7] | Yanqin Li, Wenlong Wang, Junqi Tian, Dan Cui, Jun Yuan, Bin Fang, Nianliang Yin, Zelong Li, Feng Yu. Highly efficient hydrogenation of NO to NH3 via a Fe2O3/TiO2 catalyst [J]. Chinese Journal of Catalysis, 2025, 71(4): 330-339. |
[8] | Meng Liu, Caixia Miao, Yumeng Fo, Wenxuan Wang, Yao Ning, Shengqi Chu, Weiyu Song, Ying Zhang, Jian Liu, Zhijie Wu, Wenhao Luo. Chelating-agent-free incorporation of isolated Ni single-atoms within BEA zeolite for enhanced biomass hydrogenation [J]. Chinese Journal of Catalysis, 2025, 71(4): 308-318. |
[9] | Hao Liang, Shunan Zhang, Ruonan Zhang, Haozhi Zhou, Lin Xia, Yuhan Sun, Hui Wang. Strong interaction between Fe and Ti compositions for effective CO2 hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 71(4): 146-157. |
[10] | Oleksandr Savateev, Jingru Zhuang, Sijie Wan, Chunshan Song, Shaowen Cao, Junwang Tang. Photocatalytic water splitting versus H2 generation coupled with organic synthesis: A large critical review [J]. Chinese Journal of Catalysis, 2025, 70(3): 44-114. |
[11] | Guomin Li, Teng Li, Bin Wang, Yong Ding, Xinjiang Cui, Feng Shi. Identification of stable and selective nickel alloy catalyst for acceptorless dehydrogenation of ethane [J]. Chinese Journal of Catalysis, 2025, 70(3): 322-332. |
[12] | Jieting He, Yu Liang, Binbin Zhao, Lei Liu, Qian He, Dingsheng Wang, Jinxiang Dong. Isomorphous substitution in CaAl-hydrotalcite to construct high density single-atom catalysts for selective N-Heteroarene hydrogenation [J]. Chinese Journal of Catalysis, 2025, 70(3): 353-362. |
[13] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
[14] | Xi-Lai Liu, Wei Zhong, Yu-Fan Jin, Tian-Jiao Wang, Xue Xiao, Pei Chen, Yu Chen, Xuan Ai. Pd-Pt bimetallene for the energy-saving electrochemical hydrogenation of 5-hydroxymethylfurfural [J]. Chinese Journal of Catalysis, 2025, 69(2): 241-248. |
[15] | Miao Zhang, Limin Zhang, Mingrui Wang, Guanghui Zhang, Chunshan Song, Xinwen Guo. The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 68(1): 366-375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||