Chinese Journal of Catalysis ›› 2025, Vol. 70: 322-332.DOI: 10.1016/S1872-2067(24)60229-9
• Articles • Previous Articles Next Articles
Guomin Lia,b,c,1, Teng Lia,1, Bin Wanga, Yong Dingb, Xinjiang Cuia,*(), Feng Shia,*(
)
Received:
2024-10-17
Accepted:
2024-12-18
Online:
2025-03-18
Published:
2025-03-20
Contact:
* E-mail: About author:
1 Contributed equally to this work.
Supported by:
Guomin Li, Teng Li, Bin Wang, Yong Ding, Xinjiang Cui, Feng Shi. Identification of stable and selective nickel alloy catalyst for acceptorless dehydrogenation of ethane[J]. Chinese Journal of Catalysis, 2025, 70: 322-332.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60229-9
Fig. 1. High-magnification TEM image of the Ni3Mo, Ni and Mo NPs on the Al2O3 support and Intensity profile recorded from the area indicated by the yellow rectangular box in panel: (a,b) Ni3Mo/Al2O3; (c,d) Ni/Al2O3; (e,f) Mo/Al2O3. (g) The HAADF-STEM imaging of Ni3Mo/Al2O3 catalyst. (h) EDS line scan analysis of intensity profiles of Ni (K) and Mo (L) components in the Ni3Mo/Al2O3 (along the red line in g). (i) EDS mapping of the Ni3Mo/Al2O3 shown in g, with the signals attributed to the different elements shown as Ni, Mo and Al.
Fig. 2. Characterizations of catalysts. Normalized XANES spectra of Ni (a) and Mo (b) for Ni3Mo/Al2O3-fresh, Ni3Mo/Al2O3-used, Ni/Al2O3-fresh and Mo/Al2O3-fresh. (c) Fourier transforms of k3-weighted EXAFS of Ni K-edge for Ni2O3, Ni foil and Ni3Mo/Al2O3-used, respectively. (d) Fourier transforms of k3-weighted EXAFS of Mo K-edge for MoO3, Mo foil and Ni3Mo/Al2O3-used. (e) Ni 2p XPS spectra of Ni/Al2O3 and Ni3Mo/Al2O3 catalysts before reaction. (f) Mo 3d XPS spectra of Mo/Al2O3 and Ni3Mo/Al2O3 catalysts before reaction.
Fig. 3. (a) Initial ethylene selectivity versus ethane conversion for Ni-M/Al2O3 catalysts in the ethane dehydrogenation reaction at 600 °C. (b) Ethane conversion and ethylene selectivity with Ni/Al2O3, Mo/Al2O3 and Ni3Mo/Al2O3. (c) Effect of the ratio of Ni to Mo on the EDH. (d) Effect of calcinating temperature on ethane conversion and ethylene selectivity. (e) The formation rate of ethylene over Ni3Mo/Al2O3 catalyst at different space velocities at 600 °C (active metal surface area: 0.148 m2 g-1). (f) Effect of the supports on the EDH. Reaction temperature: 600 °C, 1 atm, 8% H2, 20% C2H6/Ar, 0.5 g catalyst, reaction time: 10 min.
Fig. 4. (a) Catalytic performance of Ni3Mo/Al2O3, Pt/Al2O3 and PtSn/Al2O3 catalysts at 600 °C. (b) Recycling performance of Ni3Mo/Al2O3 catalyst in catalytic EDH. In situ FTIR spectra of ethane adsorption and reaction on Ni3Mo/Al2O3 catalyst at 550 °C: the adsorption of ethane (c) and ethane (d).
Fig. 5. (a) Flow rate test: The trend of ethane conversion with reaction flow rate. (Ni3Mo/Al2O3, Reaction temperature: 600 °C, WHSV = 13.66 h-1). (b) Particle size test: The trend of ethane conversion with catalyst particle size. (No limitation from interphase diffusion in a, mcat.: 0.2 g). (c) Arrhenius plots for the activation energies (Ea) of the EDH reaction on Ni/Al2O3, Mo/Al2O3 and Ni3Mo/Al2O3 catalysts. C2H6-TPSR profiles on Ni/Al2O3 (d), Mo/Al2O3 (e) and Ni3Mo/Al2O3 (f) catalysts.
Reaction temperature (K) | Equilibrium conversion a (%) | Equilibrium constant K (10-2) a | Experimental conversion (%) | Reaction quotient Q (10-3) | Frac. Appr. to Equil. b (%) |
---|---|---|---|---|---|
853 | 14.46 | 1.79 | 2.10 | 1.81 | 10.11 |
863 | 17.02 | 2.26 | 2.56 | 2.24 | 9.91 |
873 | 19.83 | 2.85 | 3.12 | 2.78 | 9.75 |
883 | 22.86 | 3.56 | 3.74 | 3.40 | 9.55 |
893 | 26.10 | 4.44 | 4.16 | 3.83 | 8.63 |
Table 1 Ethane conversion of Ni3Mo/Al2O3 in kinetic experiments.
Reaction temperature (K) | Equilibrium conversion a (%) | Equilibrium constant K (10-2) a | Experimental conversion (%) | Reaction quotient Q (10-3) | Frac. Appr. to Equil. b (%) |
---|---|---|---|---|---|
853 | 14.46 | 1.79 | 2.10 | 1.81 | 10.11 |
863 | 17.02 | 2.26 | 2.56 | 2.24 | 9.91 |
873 | 19.83 | 2.85 | 3.12 | 2.78 | 9.75 |
883 | 22.86 | 3.56 | 3.74 | 3.40 | 9.55 |
893 | 26.10 | 4.44 | 4.16 | 3.83 | 8.63 |
Fig. 6. Adsorption structures and the charge density differences (isovalue of ±0.0006 electron ??3) of ethane on Ni (111) (a,d,g), Mo (110) (b,e,h) and Ni3Mo (100) (c,f,i) surfaces. ∠A is the angle of C?C bond with respect to surface plane.
Fig. 7. Energy profiles of ethane dehydrogenation on Ni(111) (a), Mo(110) (b) and Ni3Mo(100) (c) surfaces. (d) Comparison of the apparent barrier of ethane dehydrogenation. (e) The energy difference between desorption energy and energy barrier for further dehydrogenation of ethylene on Ni(111), Mo(110) and Ni3Mo(100) surfaces.
|
[1] | Oleksandr Savateev, Jingru Zhuang, Sijie Wan, Chunshan Song, Shaowen Cao, Junwang Tang. Photocatalytic water splitting versus H2 generation coupled with organic synthesis: A large critical review [J]. Chinese Journal of Catalysis, 2025, 70(3): 44-114. |
[2] | Tao Ban, Jian-Wei Wang, Xi-Yang Yu, Hai-Kuo Tian, Xin Gao, Zheng-Qing Huang, Chun-Ran Chang. Machine learning-assisted screening of SA-FLP dual-active-site catalysts for the production of methanol from methane and water [J]. Chinese Journal of Catalysis, 2025, 70(3): 311-321. |
[3] | Lina Zhang, Guowei Liu, Xinyan Deng, Qiuye Li, Jianjun Yang. Atomically dispersed Ba sites as electron promoters to enhance the performance for photoreduction of CO2 [J]. Chinese Journal of Catalysis, 2025, 70(3): 341-352. |
[4] | Chao-an Liang, Bo Zeng, Baolin Feng, Huibing Shi, Fengqi Zhang, Jianhua Liu, Lin He, Yuxiao Ding, Chungu Xia. Heterogeneous Co-based catalytic systems for alkene hydroformylation [J]. Chinese Journal of Catalysis, 2025, 70(3): 115-141. |
[5] | Shuang Li, Haili Lin, Xuemei Jia, Xin Jin, Qianlong Wang, Xinyue Li, Shifu Chen, Jing Cao. Bimetallic NixFe2-xP cocatalyst with tunable electronic structure for enhanced photocatalytic benzyl alcohol oxidation coupled with H2 evolution over red phosphorus [J]. Chinese Journal of Catalysis, 2025, 70(3): 363-377. |
[6] | Shuhao Wei, Guojun Lan, Yiyang Qiu, Di Lin, Wei Kong, Ying Li. Advances in metal-free carbon catalysts for acetylene hydrochlorination: From heteroatom doping to intrinsic defects over the past decade [J]. Chinese Journal of Catalysis, 2025, 70(3): 8-43. |
[7] | Shuhao Wei, Ye Chen, Yiyang Qiu, Wei Kong, Di Lin, Jiarong Li, Guojun Lan, Yi Jia, Xiucheng Sun, Zaizhe Cheng, Jian Liu, P. Hu, Ying Li. The curvature structure unlocks an ultra-efficient metal-free carbon catalyst surpassing gold for acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2025, 70(3): 260-271. |
[8] | Dezheng Li, Huimin Liu, Xuewen Xiao, Manqi Zhao, Dehua He, Yiming Lei. Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2025, 70(3): 399-409. |
[9] | Jieting He, Yu Liang, Binbin Zhao, Lei Liu, Qian He, Dingsheng Wang, Jinxiang Dong. Isomorphous substitution in CaAl-hydrotalcite to construct high density single-atom catalysts for selective N-Heteroarene hydrogenation [J]. Chinese Journal of Catalysis, 2025, 70(3): 353-362. |
[10] | Hongfen Li, Yihe Zhang, Jianming Li, Qing Liu, Xiaojun Zhang, Youpeng Zhang, Hongwei Huang. Boosting H2O2 evolution of CdS via constructing a ternary photocatalyst with earth-abundant halloysite nanotubes and NiS co-catalyst [J]. Chinese Journal of Catalysis, 2025, 69(2): 111-122. |
[11] | Mayra Alejandra Suarez, Laura Santamaria, Gartzen Lopez, Enara Fernandez, Martin Olazar, Maider Amutio, Maite Artetxe. Oxidative steam reforming of HDPE pyrolysis volatiles on Ni catalysts: Effect of the support (Al2O3, ZrO2, SiO2) and promoter (CeO2, La2O3) on the catalyst performance [J]. Chinese Journal of Catalysis, 2025, 69(2): 149-162. |
[12] | Jiayi Cui, Xintao Yu, Xueyao Li, Jianmin Yu, Lishan Peng, Zidong Wei. Advances in spin regulation of M-N-C single-atom catalysts and their applications in electrocatalysis [J]. Chinese Journal of Catalysis, 2025, 69(2): 17-34. |
[13] | Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo, BaoYu Xia. Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 69(2): 1-16. |
[14] | Jing Liu, Xiandi Ma, Jeonghan Roh, Dongwon Shin, Ara Cho, Jeong Woo Han, Jianping Long, Zhen Zhou, Menggai Jiao, Kug-Seung Lee, EunAe Cho. Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 69(2): 259-270. |
[15] | Yangyang Li, Jingyi Yang, Botao Qiao, Tao Zhang. Size-dependent strong metal-support interaction modulation of Pt/CoFe2O4 catalysts [J]. Chinese Journal of Catalysis, 2025, 69(2): 292-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||