Chinese Journal of Catalysis ›› 2025, Vol. 73: 279-288.DOI: 10.1016/S1872-2067(25)64655-9
• Article • Previous Articles Next Articles
Xuelu He, Wenyan Ma(), Siteng Zhu, Dan Li, Jia-Xing Jiang(
)
Received:
2024-12-25
Accepted:
2025-02-11
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: wenyanma@jhun.edu.cn (W. Ma),jiaxing@jhun.edu.cn (J.-X. Jiang).
Supported by:
Xuelu He, Wenyan Ma, Siteng Zhu, Dan Li, Jia-Xing Jiang. The effect of electronic structure matching between building blocks in conjugated porous polymers on photocatalytic hydrogen evolution activity[J]. Chinese Journal of Catalysis, 2025, 73: 279-288.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64655-9
Fig. 1. The structural characterizations of the polymers. (a) FT-IR spectra. (b) The solid-state 13C NMR. (c) TGA curves. (d) The N2 adsorption (solid)-desorption (hollow) isotherms.
Fig. 3. Photophysical properties of the polymers. (a) The UV-vis reflectance spectra. (b) Tauc plots of the Kubelka-Munk function vs. Energy. (c) Fluorescence emission spectra. (d) Time-resolved photoluminescence spectra. (e) Energy band positions. (f) Photocurrent curves.
Fig. 4. The femtosecond transient absorption spectra obtained from the suspensions of DBC-B (a), DBC-BMO (b), and DBC-BCN (c) at various delay times. The transient decay kinetics of DBC-B (d), DBC-BMO (e), and DBC-BCN (f).
Fig. 5. Time course of hydrogen evolution for the bare polymers (10 mg) under visible light (λ > 420 nm) (a) and UV-vis light (λ > 300 nm) (b). (c) The AQY plot of DBC-BCN combined with UV-vis reflectance spectrum. (d) Stability test of DBC-BCN under visible light irradiation.
Fig. 6. (a) The HOMO and LUMO orbital distribution of polymer fragments based on DFT simulation. (b) ESP values mapped on the van der Waals surface of polymer fragments.
|
[1] | Yihan Zheng, Yuxin Wang, Ruitao Li, Haoran Yang, Yuanyuan Dai, Qiang Niu, Tiejun Lin, Kun Gong, Liangshu Zhong. CO2-free hydrogen production from solar-driven photothermal catalytic decomposition of methane [J]. Chinese Journal of Catalysis, 2025, 73(6): 289-299. |
[2] | Jindou Hu, Miaomiao Zhu, Zahid Ali Ghazi, Yali Cao. Restoration mechanism of photocatalytic H2O2/H2 production stability of ZnO/ZnS S-scheme heterojunction [J]. Chinese Journal of Catalysis, 2025, 71(4): 319-329. |
[3] | Lu Zhang, Hourui Zhang, Dongyang Zhu, Zihan Fu, Shuangshi Dong, Cong Lyu. Construction of multivariate donor-acceptor heterojunction in covalent organic frameworks for enhanced photocatalytic oxidation: Regulating electron transfer and superoxide radical generation [J]. Chinese Journal of Catalysis, 2024, 66(11): 181-194. |
[4] | Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 88-103. |
[5] | Xin Kang, Qiangmin Yu, Tianhao Zhang, Shuqi Hu, Heming Liu, Zhiyuan Zhang, Bilu Liu. A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 9-24. |
[6] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[7] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[8] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[9] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[10] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[11] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[12] | Zhipeng Xie, Xiubei Yang, Pei Zhang, Xiating Ke, Xin Yuan, Lipeng Zhai, Wenbin Wang, Na Qin, Cheng-Xing Cui, Lingbo Qu, Xiong Chen. Vinylene-linked covalent organic frameworks with manipulated electronic structures for efficient solar-driven photocatalytic hydrogen production [J]. Chinese Journal of Catalysis, 2023, 47(4): 171-180. |
[13] | Kehan Zhu, Haifeng Jiang, Gao-Feng Chen, Hao Wu, Liang-Xin Ding, Haihui Wang. Simultaneous electrosynthesis of nitrate and hydrogen by integrating ammonia oxidation and water reduction [J]. Chinese Journal of Catalysis, 2023, 55(12): 216-226. |
[14] | Sheng Xiong, Rongdi Tang, Daoxin Gong, Yaocheng Deng, Jiangfu Zheng, Ling Li, Zhanpeng Zhou, Lihua Yang, Long Su. Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production [J]. Chinese Journal of Catalysis, 2022, 43(7): 1719-1748. |
[15] | Shaobo Zhang, Huiting Huang, Zhijie Zhang, Jianyong Feng, Zongguang Liu, Junzhuan Wang, Jun Xu, Zhaosheng Li, Linwei Yu, Kunji Chen, Zhigang Zou. Ultrathin 3D radial tandem-junction photocathode with a high onset potential of 1.15 V for solar hydrogen production [J]. Chinese Journal of Catalysis, 2022, 43(7): 1842-1850. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||