Chinese Journal of Catalysis ›› 2025, Vol. 71: 319-329.DOI: 10.1016/S1872-2067(24)60240-8
• Articles • Previous Articles Next Articles
Jindou Hua,*,1(), Miaomiao Zhua,1, Zahid Ali Ghazib, Yali Caoa,*(
)
Received:
2024-11-01
Accepted:
2024-12-23
Online:
2025-04-18
Published:
2025-04-13
Contact:
* E-mail: About author:
1Contributed equally this work.
Supported by:
Jindou Hu, Miaomiao Zhu, Zahid Ali Ghazi, Yali Cao. Restoration mechanism of photocatalytic H2O2/H2 production stability of ZnO/ZnS S-scheme heterojunction[J]. Chinese Journal of Catalysis, 2025, 71: 319-329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60240-8
Fig. 1. (a) Schematic diagram of ZnO/ZnS synthesis. (b) XRD patterns of the samples. XPS spectra (c) and high-resolution XPS scans: C 1s (d), Zn 2p (e), S 2p (f), O 1s (g).
Fig. 2. SEM images of ZnS (a) and ZS-5 (b). TEM (c) and HRTEM (d, e) images of ZS-5. (f) SAED pattern of ZS-5. (g-j) Elemental mapping images of Zn, O and S elements, respectively.
Fig. 3. (a,b) Photocatalytic H2O2 production performance of samples. (c,d) Cycling performance of ZS-5. (e) Comparison of ZS-5 performance with other catalysts.
Fig. 5. (a) UV-vis spectra of photocatalytic materials. (b) Band gap diagram of different catalysts. (c) M-S plots of ZnS and ZS-5 samples. (d) Energy band structures of ZnO and ZnS.
Fig. 6. Calculation electrostatic potentials of ZnS (a) and ZnO (b) by DFT. (c) S-scheme charge transfer mechanism. AFM (d) and KPFM (e) images of ZS-5 in darkness. (f) KPFM image of ZS-5 in illumination. (g) Surface potential difference in darkness and light. EPR spectra of DMPO-?OH (h) and DMPO-?O2- (i).
Fig. 7. (a) PL spectra of photocatalytic materials. (b) Transient photocurrent responses. (c) EIS plots for ZnS and ZS-5. (d) TRPL spectra of ZnS and ZS-5 (λ = 480 nm).
|
[1] | Anees A. Ansari, Ruichan Lv, Shili Gai, Piaoping Yang. Chemistry of CeO2-derived nanocomposites photocatalysts for environment monitoring and energy conversion [J]. Chinese Journal of Catalysis, 2025, 71(4): 70-113. |
[2] | Mingyang Xu, Zhenzhen Li, Rongchen Shen, Xin Zhang, Zhihong Zhang, Peng Zhang, Xin Li. Constructing S-scheme heterojunction between porphyrinyl covalent organic frameworks and Nb2C MXene for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 70(3): 431-443. |
[3] | Yong-Hui Wu, Yu-Qing Yan, Yi-Xiang Deng, Wei-Ya Huang, Kai Yang, Kang-Qiang Lu. Rational construction of S-scheme CdS quantum dots/In2O3 hollow nanotubes heterojunction for enhanced photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2025, 70(3): 333-340. |
[4] | Farideh Kolahdouzan, Nahal Goodarzi, Mahboobeh Setayeshmehr, Dorsa Sadat Mousavi, Alireza Z. Moshfegh. 1D-based nanostructures in photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 70(3): 230-259. |
[5] | Yiping Jiang, Zaw Ko Latt, Zhiqi Cong. Catalytic performances of engineered and artificial heme peroxygenases [J]. Chinese Journal of Catalysis, 2025, 69(2): 35-51. |
[6] | Dongxiao Wen, Nan Wang, Jiahe Peng, Tetsuro Majima, Jizhou Jiang. Collaborative photocatalytic C-C coupling with Cu and P dual sites to produce C2H4 over CuxP/g-C3N4 heterojunction [J]. Chinese Journal of Catalysis, 2025, 69(2): 58-74. |
[7] | Jian-Zhou Xiao, Zhi-Hao Zhao, Nan-Nan Zhang, Hong-Tu Che, Xiu Qiao, Guang-Ying Zhang, Xiaoyu Chu, Ya Wang, Hong Dong, Feng-Ming Zhang. Linkage engineering in covalent organic frameworks for overall photocatalytic H2O2 synthesis from water and air [J]. Chinese Journal of Catalysis, 2025, 69(2): 219-229. |
[8] | Bingquan Xia, Gaoxiong Liu, Kun Fan, Rundong Chen, Xin Liu, Laiquan Li. Boosting hydrogen peroxide photosynthesis via a 1D/2D S-scheme heterojunction constructed by a covalent triazine framework with dual O2 reduction centers [J]. Chinese Journal of Catalysis, 2025, 69(2): 315-326. |
[9] | Shaolei Gao, Peng Lu, Liang Qi, Yingli Wang, Hua Li, Mao Ye, Valentin Valtchev, Alexis T. Bell, Zhongmin Liu. Dimethoxymethane carbonylation and disproportionation over extra-large pore zeolite ZEO-1: Reaction network and mechanism [J]. Chinese Journal of Catalysis, 2025, 68(1): 230-245. |
[10] | Nanfang Tang, Qinghao Shang, Shuai Chen, Yuxia Ma, Qingqing Gu, Lu Lin, Qike Jiang, Guoliang Xu, Chuntian Wu, Bing Yang, Zhijie Wu, Hui Shi, Jian Liu, Wenhao Luo, Yu Cong. Reversible encapsulation tailored interfacial dynamics for boosting the water-gas shift performance [J]. Chinese Journal of Catalysis, 2025, 68(1): 394-403. |
[11] | Lingxuan Hu, Yan Zhang, Qian Lin, Fengying Cao, Weihao Mo, Shuxian Zhong, Hongjun Lin, Liyan Xie, Leihong Zhao, Song Bai. Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO2 reduction and H2O oxidation in 2D S-scheme photosynthetic systems [J]. Chinese Journal of Catalysis, 2025, 68(1): 311-325. |
[12] | Yang Zhang, Nengneng Xu, Bingbing Gong, Xiaoxiao Ye, Yi Yang, Zhaodi Wang, Biyan Zhuang, Min Wang, Woochul Yang, Guicheng Liu, Joong Kee Lee, Jinli Qiao. A visible-light-driven CoS2/CuS@CNT-C3N4 photocatalyst for high-performance rechargeable zinc-air batteries beyond 500 mW cm‒2 [J]. Chinese Journal of Catalysis, 2025, 68(1): 300-310. |
[13] | Shijie Li, Changjun You, Fang Yang, Guijie Liang, Chunqiang Zhuang, Xin Li. Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants [J]. Chinese Journal of Catalysis, 2025, 68(1): 259-271. |
[14] | Baofei Hao, Younes Ahmadi, Jan Szulejko, Tianhao Zhang, Zhansheng Lu, Ki-Hyun Kim. The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms [J]. Chinese Journal of Catalysis, 2025, 68(1): 282-299. |
[15] | Fangxuan Liu, Bin Sun, Ziyan Liu, Yingqin Wei, Tingting Gao, Guowei Zhou. Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 64(9): 152-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||