Chinese Journal of Catalysis ›› 2025, Vol. 71: 70-113.DOI: 10.1016/S1872-2067(24)60266-4
• Reviews • Previous Articles Next Articles
Anees A. Ansaria,*(), Ruichan Lvb,*(
), Shili Gaic, Piaoping Yangc
Received:
2024-12-07
Accepted:
2025-02-03
Online:
2025-04-18
Published:
2025-04-13
Contact:
* E-mail: About author:
Prof. Anees A Ansari is a full professor and a distinguished researcher specializing in luminescent Ln3+ materials. With a remarkable h-index of 55, he has made significant contributions to the field of nanomaterials synthesis, focusing on the design, characterization, and emission efficiency of advanced luminescent materials. He has authored ground breaking research and reviews that have advanced the understanding of luminescent Ln3+ materials and actively shares his knowledge through scientific talks and workshops, inspiring the next generation of researchers. Dr. Ansari’s dedication to luminescent nanomaterial research and his exceptional academic and professional record position him as a leader in driving innovation and excellence in nanomaterial science.
Supported by:
Anees A. Ansari, Ruichan Lv, Shili Gai, Piaoping Yang. Chemistry of CeO2-derived nanocomposites photocatalysts for environment monitoring and energy conversion[J]. Chinese Journal of Catalysis, 2025, 71: 70-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60266-4
General characteristics | Value (s) |
---|---|
Standard atomic weight | 140.116 g mol−1 |
Molar mass | 172.12 g mol−1 |
Crystallographic phase [ | Cubic (calcium fluorite) |
Ionic radii (Ce3+) [ | 0.1283 nm |
Ionic radii (Ce4+) [ | 0.1098 nm |
Space group [ | O5h (Fm3m) |
Lattice parameter a [ | 5.41134 Å |
Lattice parameter c [ | 5.418 Å |
Cell volume (Å) | 158.44 Å |
Absorption band maxima | 350 nm |
Band gap (eV) [ | 3.4 eV |
Emission band maxima | 470 nm |
Melting point (k) | 2750 K |
Boiling point | 3716 K |
Specific heat | 460 J kg−1 K-1 |
Density (g cm-3) | 6.770 g cm−3 |
Heat of fusion | 5.46 kJ mol−1 |
Heat of vaporization | 398 kJ mol−1 |
Exciton banding energy (eV) | 0.4 eV |
dielectric constant (ε) [ | 26 |
Electron mobility/conductivity | 0.0115 106/cm Ω |
Electronic conductivity (25 °C) | 2.48 × 10−8 S cm−1 |
Ionic conductivity (1000 °C, in air) (600 °C, in air) (600 °C, in H2) | 3.13 × 10−3 S cm−1 4.08 × 10−5 S cm-1 1.11 × 10−3 S cm−1 |
Electrical resistivity | 828 nΩ·m (β, poly) |
Refractive index | 2.1 |
Relative electrical constant | 25 |
Relative dielectric constant (0.5-50 MHz) | 11 |
Isoelectric point (IEP) [ | 9.0 |
Thermal conductivity | 11.3 W m−1 K−1(300 K) |
Thermal expansion coefficient | 11.5 × 10−6 K−1 |
Specific heat capacity | (25 °C) 26.94 J mol−1 K−1 |
Young modulus (GPa) | 165 × 109 N m−2 |
Transition pressure/Hardness (GPa) [ | 30 GPa |
Formation energy (25 °C, 1 atm) | −1025.379 kJ mol−1 |
Magnetic susceptibility (cmol) | 26 × 10−6 cm3 mol−1 |
Table 1 Fundamental characteristics of the cerium oxide [256].
General characteristics | Value (s) |
---|---|
Standard atomic weight | 140.116 g mol−1 |
Molar mass | 172.12 g mol−1 |
Crystallographic phase [ | Cubic (calcium fluorite) |
Ionic radii (Ce3+) [ | 0.1283 nm |
Ionic radii (Ce4+) [ | 0.1098 nm |
Space group [ | O5h (Fm3m) |
Lattice parameter a [ | 5.41134 Å |
Lattice parameter c [ | 5.418 Å |
Cell volume (Å) | 158.44 Å |
Absorption band maxima | 350 nm |
Band gap (eV) [ | 3.4 eV |
Emission band maxima | 470 nm |
Melting point (k) | 2750 K |
Boiling point | 3716 K |
Specific heat | 460 J kg−1 K-1 |
Density (g cm-3) | 6.770 g cm−3 |
Heat of fusion | 5.46 kJ mol−1 |
Heat of vaporization | 398 kJ mol−1 |
Exciton banding energy (eV) | 0.4 eV |
dielectric constant (ε) [ | 26 |
Electron mobility/conductivity | 0.0115 106/cm Ω |
Electronic conductivity (25 °C) | 2.48 × 10−8 S cm−1 |
Ionic conductivity (1000 °C, in air) (600 °C, in air) (600 °C, in H2) | 3.13 × 10−3 S cm−1 4.08 × 10−5 S cm-1 1.11 × 10−3 S cm−1 |
Electrical resistivity | 828 nΩ·m (β, poly) |
Refractive index | 2.1 |
Relative electrical constant | 25 |
Relative dielectric constant (0.5-50 MHz) | 11 |
Isoelectric point (IEP) [ | 9.0 |
Thermal conductivity | 11.3 W m−1 K−1(300 K) |
Thermal expansion coefficient | 11.5 × 10−6 K−1 |
Specific heat capacity | (25 °C) 26.94 J mol−1 K−1 |
Young modulus (GPa) | 165 × 109 N m−2 |
Transition pressure/Hardness (GPa) [ | 30 GPa |
Formation energy (25 °C, 1 atm) | −1025.379 kJ mol−1 |
Magnetic susceptibility (cmol) | 26 × 10−6 cm3 mol−1 |
Fig. 5. Schematic illustration of type-I heterojunction with straddling gap (a), type-II heterojunction with the staggered gap (b), and type-III heterojunction with broken gap (c) [30,63,64].
Fig. 6. Proposed photoreduction mechanisms of possible type-ii and Z-scheme charge transfer mechanisms for Wo3@CeO2 heterojunction photocatalyst [11].
Fig. 7. S-scheme charge transportation mechanism between CeO2 and CuO [294] (a), electron transfer path within the CeO2/BiOCl composite [35] (b), charge transfer mechanism in AgInS2@CeO2-x heterostructure before and after contact [34] (c).
Fig. 8. (a) Schematic illustration of the electron-hole separation under the influence of the internal electric field of a p-n heterojunction photocatalyst under light irradiation [63]. (b) Charge transfer pathway and reaction mechanism for CO2 photoreduction of CuS@CeO2\Pt HCs [284]. (c) Mechanism for enhanced photocatalytic hydrogen evolution under visible light irradiation in Co3O4/CeO2 p-n heterojunction [290].
Fig. 9. (a) Schottky junction diagram [295]. (b) Enhancement mechanism of photocatalytic CO2 reduction activity of CeO2/Ti3C2-MXene with built-in electric field induced Schottky-junction [296].
Fig. 10. Electron-hole separation on the surface heterojunction of anatase TiO2 with an optimal ratio of the exposed [001] and [101] facets (55:45) [63].
Methods | Advantage (s) | Disadvantage (s) |
---|---|---|
Coprecipitation | simple, inexpensive, minimum reactants requirement, fast, less time eco-friendly, commercial-scale production, high yield | different shapes and sizes of the obtained products/particles, high hydrophilicity, aggregation |
Hydrothermal/ solvothermal | production of high-quality analogous shape nano/micro products with controlled shape-size, and different morphologies | operate at high-temperature, easy but expensive technique, insolubility in most organic solvents, long reaction time, surfactants, toxic byproducts, low yield |
Sol-gel | operate at environmental conditions, wet-chemical, easy, porous morphology, hydrophilic particles, lower temperature process. | difficult in removal of hazardous byproducts and reactants, long reaction time, drying high temperature, uncontrolled shape and size |
Microwave | operation under pressure with lower temperature | uncontrolled growth, and various shapes & size of the particles |
Sonochemical | operation at ambient temperature and pressure porous particles | different bigger size particles with dissimilar size & shape |
Green synthesis methods | ambient temperature, low price, eco-friendly, unhazardous chemical in lower quantity | long reaction time, very low yield, uncontrolled shape & size. |
Table 2 Synthesis methods and their importance.
Methods | Advantage (s) | Disadvantage (s) |
---|---|---|
Coprecipitation | simple, inexpensive, minimum reactants requirement, fast, less time eco-friendly, commercial-scale production, high yield | different shapes and sizes of the obtained products/particles, high hydrophilicity, aggregation |
Hydrothermal/ solvothermal | production of high-quality analogous shape nano/micro products with controlled shape-size, and different morphologies | operate at high-temperature, easy but expensive technique, insolubility in most organic solvents, long reaction time, surfactants, toxic byproducts, low yield |
Sol-gel | operate at environmental conditions, wet-chemical, easy, porous morphology, hydrophilic particles, lower temperature process. | difficult in removal of hazardous byproducts and reactants, long reaction time, drying high temperature, uncontrolled shape and size |
Microwave | operation under pressure with lower temperature | uncontrolled growth, and various shapes & size of the particles |
Sonochemical | operation at ambient temperature and pressure porous particles | different bigger size particles with dissimilar size & shape |
Green synthesis methods | ambient temperature, low price, eco-friendly, unhazardous chemical in lower quantity | long reaction time, very low yield, uncontrolled shape & size. |
Semiconductor material | Eg/eV | Advantageous property | Disadvantages property |
---|---|---|---|
CeO2 | 3.2 | excellent thermo-chemical stability, wide Eg, optically transparent, less toxic, reversible valence state Ce3+/Ce4+, high oxygen storage, high length-to-diameter ratios, larger specific surface areas, and efficient charge migration at nanoscale structures | fast recombination rate (e−-h+), sluggish interfacial charge transportation, inadequate band structure, lower photoabsorption(visible light) capacity, and back oxidation reactions. |
ZnO | 3.44 | tunable crystal structure, wide bandgap, optically transparent, less toxic, good thermochemical robustness, absorption in the visible region, enormous surface area | poor absorption of visible light and quick recombination of photogenerated (e−-h+) pairs, sluggish interfacial charge transportation, and inadequate band structure. |
CuO (p-type) | 1.2-2.0 | lower bandgap, large surface areas, proper redox potential, Stable in solutions, good electrochemical activity super thermal conductivity,giant magnetoresistance materials, high-temperature superconductors, and | fast charge carrier recombination and a low specific surface area along with utilized operational parameters are prominent drawbacks that hinder its efficiency |
TiO2 Rutile Anatase | 3.0 3.3 | high chemical and physical stability, low toxicity, low cost, | anatase is highly photoactive due to its indirect band gap which results in a high electron-hole separation lifetime. rutile has a low electron-hole separation lifetime due to a direct band gap which makes it less photoactive than anatase; lower electron-hole rates of recombination, and less absorption capacity. |
Fe2O3 | magnetic, non-toxicity, high efficiency, corrosion resistance, chemically& thermodynamically stable, centered hexagonal, rhombohedral geometry, and a tightly packed O2 lattice. excellent antimicrobial and anticancer activity | rapid electron transfer and reduces electron-hole recombination | |
Co3O4 | 1.76 | good operational safety and moderate cost, narrow bandgap, proper catalytic activity, and low cost | poor high-rate energy and unsustainable super catalytic activity |
MgO | 4.68 | superb ionic character, effective resistance to high temperatures, high levels of ionization, high adsorption capacity simple stoichiometry, good crystalline structure & size, shape controllability, unique thermal, electronic, optical, and mechanical features | rapid recombination process in a short time and easily coupled with the excited charge carriers, free radical formations, and degradation capability |
WO3 [ | 2.7-2.8 | environmentally friendly, visible light responsive, direct band gap | narrow absorption spectrum, low band gap, rapid e−-h+ recombination rate |
Bi2O3 | 2.4-2.8 | excellent separation applicability of photogenerated electron-hole pairs, nontoxicity, low cost, relatively narrow band gap, and polymorphism | fast recombination of photogenerated electron-hole pairs |
BiOCl | 3.0-3.6 | ternary semiconductor, wide bandgap energy, low toxicity, eco-friendliness, high optical stability, and cost-effectiveness | weak solar light response, large band gap energy, and rapid recombination rate |
CuBi2O4 | 1.5-1.8 | high electronegativity, narrow band gap, strong reduction potential, efficient visible-light response | weak oxidation potential, fast recombination rate of its charge carriers |
Bi5O7I | superior redox potential, n-type semiconductor, wider bandgap | sluggish charge-transfer kinetics and suboptimal absorption of visible light | |
CuBi2O4 | 1.5-1.8 | n-type semiconductor, indirect narrow bandgap, wide absorption spectrum. unique monoclinic, structure, stable chemical property | rapid electron-hole recombination |
CdWO4 [ | 3.7 | excellent valance band potential (+3.5 eV), deficient visible light absorption | wide bad gap (∼3.7 eV), only UV spectrum (∼4% of total sunlight irradiation, the fast recombination rate of photo-induced electron-hole pairs |
Ag4V2O7 [ | 1.22 | the narrow energy gap of almost 1.22 eV | minimization of the recombination rate |
V2O5 [ | 2.3 eV | narrow bandgap energy | rapid recombination of electrons and holes when V2O5 is excited by light |
MoS2 | 1.2-1.9 | environmental friendliness, outstanding electronic, and thermochemical chemical properties, plentiful active sites and rapid electron mobility, strong oxidizing activity, high stability/hardness, nontoxicity, large surface area, and a high proportion of catalytically active sites | narrower band gap enables the generation of electron/hole pairs (e-/h+) upon visible-light excitation |
CuInS2 [ | 1.5 | CuInS2 shows high light absorption coefficient (∼105 cm−1) CB &VB of CuInS2 are approximately −1.10 eV and 0.40 eV vs. NHE | the main limitation in photocatalytic performance is low charge separation |
MgIn2S4 [ | 2.17 eV | excellent physicochemical stability, optical and electrical traits, high surface area, and suitable band edge potential | narrow light absorption range and faster carrier recombination rate |
ZnIn2S4 | 2.0-2.4 | non-toxic, abundant source, simple preparation process, corrosion-resistant visible light-responsive catalyst, suitable bandgap position, strong visible light-harvesting ability, high charge separation efficiency, and proliferated density of exposed active sites | low quantum efficiency and high rate of electron-hole pairs recombination |
SnS2 | 2.2 | low cost, p-type, nontoxicity, and far greater stability, small energy band gaps, Broad energy band gap semiconducting material | fast recombination and slow transfer of its e− and h+ |
g-C3N4 | 2.7 | sp2 hybridization, highly delocalized π-conjugated electronic structures, high physicochemical stability, the unique electronic band structure of visible light responsive sensitivity, and earth-abundant nature | small specific surface area, narrow visible light response (∼450 nm), and rapid recombination of the photogenerated careers |
Graphene oxid/reduced GO | 2.2/ 1.1-1.69 | special π-π* band structure, large specific surface area, superior electron mobility and excellent electrical conductivity, high electron mobility, and an overwhelming number of reactive sites can act as a perfect carrier, enhance the absorption of light, and improve the adsorption capacity toward molecules of pollutants | the minimum absorption capacity (~2.3%) of the incident light, and high mobility render the realization of the broadband photodetector with ultrafast detection (>500 GHz), poor photo-responsivity, and extremely short carrier lifetime (of the order of picoseconds), originates from its intrinsic zero-band gap energy |
Table 3 General physiochemical characteristics of some semiconductors.
Semiconductor material | Eg/eV | Advantageous property | Disadvantages property |
---|---|---|---|
CeO2 | 3.2 | excellent thermo-chemical stability, wide Eg, optically transparent, less toxic, reversible valence state Ce3+/Ce4+, high oxygen storage, high length-to-diameter ratios, larger specific surface areas, and efficient charge migration at nanoscale structures | fast recombination rate (e−-h+), sluggish interfacial charge transportation, inadequate band structure, lower photoabsorption(visible light) capacity, and back oxidation reactions. |
ZnO | 3.44 | tunable crystal structure, wide bandgap, optically transparent, less toxic, good thermochemical robustness, absorption in the visible region, enormous surface area | poor absorption of visible light and quick recombination of photogenerated (e−-h+) pairs, sluggish interfacial charge transportation, and inadequate band structure. |
CuO (p-type) | 1.2-2.0 | lower bandgap, large surface areas, proper redox potential, Stable in solutions, good electrochemical activity super thermal conductivity,giant magnetoresistance materials, high-temperature superconductors, and | fast charge carrier recombination and a low specific surface area along with utilized operational parameters are prominent drawbacks that hinder its efficiency |
TiO2 Rutile Anatase | 3.0 3.3 | high chemical and physical stability, low toxicity, low cost, | anatase is highly photoactive due to its indirect band gap which results in a high electron-hole separation lifetime. rutile has a low electron-hole separation lifetime due to a direct band gap which makes it less photoactive than anatase; lower electron-hole rates of recombination, and less absorption capacity. |
Fe2O3 | magnetic, non-toxicity, high efficiency, corrosion resistance, chemically& thermodynamically stable, centered hexagonal, rhombohedral geometry, and a tightly packed O2 lattice. excellent antimicrobial and anticancer activity | rapid electron transfer and reduces electron-hole recombination | |
Co3O4 | 1.76 | good operational safety and moderate cost, narrow bandgap, proper catalytic activity, and low cost | poor high-rate energy and unsustainable super catalytic activity |
MgO | 4.68 | superb ionic character, effective resistance to high temperatures, high levels of ionization, high adsorption capacity simple stoichiometry, good crystalline structure & size, shape controllability, unique thermal, electronic, optical, and mechanical features | rapid recombination process in a short time and easily coupled with the excited charge carriers, free radical formations, and degradation capability |
WO3 [ | 2.7-2.8 | environmentally friendly, visible light responsive, direct band gap | narrow absorption spectrum, low band gap, rapid e−-h+ recombination rate |
Bi2O3 | 2.4-2.8 | excellent separation applicability of photogenerated electron-hole pairs, nontoxicity, low cost, relatively narrow band gap, and polymorphism | fast recombination of photogenerated electron-hole pairs |
BiOCl | 3.0-3.6 | ternary semiconductor, wide bandgap energy, low toxicity, eco-friendliness, high optical stability, and cost-effectiveness | weak solar light response, large band gap energy, and rapid recombination rate |
CuBi2O4 | 1.5-1.8 | high electronegativity, narrow band gap, strong reduction potential, efficient visible-light response | weak oxidation potential, fast recombination rate of its charge carriers |
Bi5O7I | superior redox potential, n-type semiconductor, wider bandgap | sluggish charge-transfer kinetics and suboptimal absorption of visible light | |
CuBi2O4 | 1.5-1.8 | n-type semiconductor, indirect narrow bandgap, wide absorption spectrum. unique monoclinic, structure, stable chemical property | rapid electron-hole recombination |
CdWO4 [ | 3.7 | excellent valance band potential (+3.5 eV), deficient visible light absorption | wide bad gap (∼3.7 eV), only UV spectrum (∼4% of total sunlight irradiation, the fast recombination rate of photo-induced electron-hole pairs |
Ag4V2O7 [ | 1.22 | the narrow energy gap of almost 1.22 eV | minimization of the recombination rate |
V2O5 [ | 2.3 eV | narrow bandgap energy | rapid recombination of electrons and holes when V2O5 is excited by light |
MoS2 | 1.2-1.9 | environmental friendliness, outstanding electronic, and thermochemical chemical properties, plentiful active sites and rapid electron mobility, strong oxidizing activity, high stability/hardness, nontoxicity, large surface area, and a high proportion of catalytically active sites | narrower band gap enables the generation of electron/hole pairs (e-/h+) upon visible-light excitation |
CuInS2 [ | 1.5 | CuInS2 shows high light absorption coefficient (∼105 cm−1) CB &VB of CuInS2 are approximately −1.10 eV and 0.40 eV vs. NHE | the main limitation in photocatalytic performance is low charge separation |
MgIn2S4 [ | 2.17 eV | excellent physicochemical stability, optical and electrical traits, high surface area, and suitable band edge potential | narrow light absorption range and faster carrier recombination rate |
ZnIn2S4 | 2.0-2.4 | non-toxic, abundant source, simple preparation process, corrosion-resistant visible light-responsive catalyst, suitable bandgap position, strong visible light-harvesting ability, high charge separation efficiency, and proliferated density of exposed active sites | low quantum efficiency and high rate of electron-hole pairs recombination |
SnS2 | 2.2 | low cost, p-type, nontoxicity, and far greater stability, small energy band gaps, Broad energy band gap semiconducting material | fast recombination and slow transfer of its e− and h+ |
g-C3N4 | 2.7 | sp2 hybridization, highly delocalized π-conjugated electronic structures, high physicochemical stability, the unique electronic band structure of visible light responsive sensitivity, and earth-abundant nature | small specific surface area, narrow visible light response (∼450 nm), and rapid recombination of the photogenerated careers |
Graphene oxid/reduced GO | 2.2/ 1.1-1.69 | special π-π* band structure, large specific surface area, superior electron mobility and excellent electrical conductivity, high electron mobility, and an overwhelming number of reactive sites can act as a perfect carrier, enhance the absorption of light, and improve the adsorption capacity toward molecules of pollutants | the minimum absorption capacity (~2.3%) of the incident light, and high mobility render the realization of the broadband photodetector with ultrafast detection (>500 GHz), poor photo-responsivity, and extremely short carrier lifetime (of the order of picoseconds), originates from its intrinsic zero-band gap energy |
Fig. 12. (a) Structure of a nanoparticle of ceria showing [111], [110], and [100] surfaces. (b) View of one of the NPs [111] surfaces after nanoceria has been reduced reveals oxygen vacancies residing on the surface as indicated by the yellow ovals. The structures of “perfect” [111] (c), [110] (d), and [100] (e) surfaces of nanoceria simulated using DFT are consistent with the structures of the surfaces exposed by the nanoparticle (a). Ce4+ is white, Ce3+ is blue, and oxygen is red [297].
Fig. 13. (a) Evolution of oxygen vacancies in Mn-doped CeO2 for soot catalytic oxidation [298]. (b) Impact of oxygen vacancies on photocatalytic reaction [299].
Fig. 15. HAADF images and element distribution maps of the products with different morphologies before and after doping. (a,b) Cycling runs of photocatalytic activity evaluation of yttrium-doped CeO2 with a hollow sphere hierarchical structure [311].
Fig. 16. FE-SEM and HRTEM images of the different morphologies of CeO2: rod (a,b), bean (d,e), hexagon (g,h), and rod/cube (j,k) type. The HRTEM images show d-spacings for each region in the particle: (a) the rod-type sample has exposed (111) and (220) planes; (b) the bean-type sample has exposed (111) and (200) planes; (c) the hexagon-type sample has exposed (111), (220), and (311) planes; (d) the rod/cube-type sample has exposed (111) and (200) planes [312].
Fig. 17. (a) Performance comparison of CeO2/SnS2/PANI, MM-CeO2/SnS2/PANI, CeO2/SnS2, CeO2, and SnS2 in the photocatalytic reduction of Cr6+. (b) Pseudo-first order kinetic plots for determining the k values in the presence of CeO2/SnS2/PANI, MM-CeO2/SnS2/PANI, CeO2/SnS2 and SnS2. (c) Performance comparison of our synthesized CeO2/SnS2/PANI and the previously reported CPVC/SnS2/TiO2, SnO2/SnS2/CPVC, and SnS2/Au visible-light photocatalysts. (d) Pseudo-first order kinetic plots for determining the k values in the presence of CeO2/SnS2/PANI, CPVC/SnS2/TiO2, SnO2/SnS2/CPVC and SnS2/Au. (e) Possible photocatalytic activity enhancement mechanism of CeO2/SnS2/PANI [42].
Synthesis method | Nanocomposite | Shapes/Dimensionality | Morphology/ size (TEM) | Bandgap (Eg) | Light source | Pollutant | Photocatalytic activity %deg. | Ref. |
---|---|---|---|---|---|---|---|---|
Hydrothermal/sol-gel/ ultrasonic | CeO2-TiO2/PANI/ NiFe2O4 | spheres/rods 0D/1D | ![]() | TiO2:3.1, CeO2:2.2, NiFe2O4:1.5, CeO2-TiO2:2.4, CeO2-TiO2/NiFe2O4: 1.8&CeO2-TiO2/PANI/ NiFe2O4:1.6 eV | visible light | TCH | 92.6% degr. within 60 min | [ |
Hydrothermal | CeO2-x/ BiCrO3 | spherical/0D | ![]() | CeO2-x:2.66 & BiCrO3: 2.51 eV | visible light | TCH, MET, AZM, CPN | deg. of MET, AZM, CPN, MB, MO, & CR by 15% NC was 11.4, 11.7, 23.0, 4.55, 21.6, and 11.0, respectively | [ |
Self- assembled | CeO2/ BiOCl S-scheme | nnanosheets /2D | ![]() | CeO2: 2.59 eV BiOCl: 3.30 eV | UV | TCH, doxycycline, and oxytetracycline | degr. TC: 91.02%, CTC: 92.27%, DOC: 87.75%, OTC: 87.82% within 150 min | [ |
Hydrothermal | BiOCl@CeO2 | Hollow microspheres/2D | ![]() 200-300 nm | BiOCl: 3.29 eV, CeO2: 3.08 eV BiOCl@CeO2: 2.25 eV | 300 W Xe lamp 420 nm | TCH | 10 mg/L catalyst deg. ~90% in 120 min | [ |
Hydrothermal | β-Bi2O3@CeO2 | hollow microspheres/2D | ![]() 1.63-1.87 µm | Bi2O3@CeO2: 2.38 eV CeO2: 3.05 eV | 500 W Xe lamp 420 nm | TCH | 10 mg/L catalyst deg. ~92% in 180 min | [ |
Hydrothermal | BiOI/g-C3N4 /CeO2 | microspheres /2D | ![]() 2-3 µm | g-C3N4: 2.72 eV BiOI: 1.92 eV CeO2: 2.58 eV | 300 W Xe lamp 420 nm | TCH | 20 mg/L catalyst deg. 91.6% in 120 min | [ |
Molten salt calcination | CeO2/ Bi2MoO6 | spherical/ nanosheets, 0D/2D | ![]() | CeO2: 2.69 Bi2MoO6: 2.86 eV | 5 W white LED | TCH | 10 mg/L catalyst deg. 91% in 180 min | [ |
Sol-gel/calcination | MgAl2O4/ CeO2/YMnO3 | spherical/0D | ![]() | 1.45 eV | 200 W, Xe lamp | TCH | 1.0 mg/mL catalysts deg. 97.83% | [ |
coprecipitation | Ag2O/ AgBr-CeO2 | nanosheets/ 3D | ![]() 1-5 μm | CeO2: 2.98, AgBr: 2.56 eV, Ag2O: 1.34 eV | 500 W X lamp, 420nm | TCH | deg. 93.23% within 60 min | [ |
Ultrasonic-assisted, calcination | CeO2-WO3 | spherical/0D | ![]() 32.9-63 nm | WO3: 2.26 eV | 400 nm Xe lamp | TC | deg. 94.28%, pH: 6.92 | [ |
Hydrothermal | WO3/CeO2 | microspheres/ nanosheets, 2D | ![]() 4.5 μm | CeO2: 2.62eV, WO3: 2.58 eV | 300 W Xe lamp | TCH | deg. 99% of in 80 min, TC photodegradation efficiency of 0.0482 min−1 | [ |
Sonochemical/calcination | Fe2O3-CeO2-SiO2 | spherical/0D | ![]() 60-70 nm | CeO2: 2.96 eV Fe2O3-CeO2-SiO2: 2.86 eV | visible lamp | TCH | deg. 95.90%, TC conc.: 25.1 mg/L, photocatalyst dose: 0.62 g/L, visible time: 94.2 min, pH: 4.89 | [ |
Ultrasonication/calcination | Fe2O3/Bi2O3/CeO2 | sphericals/0D | ![]() | Fe2O3: 2.23eV Bi2O3: 2.79eV CeO2: 2.92eV | >400 nm visible | TCH | deg. 99.35%, catalyst dosage: 0.15 g/L, TC conc.: 20 mg/L, pH: 5 | [ |
Solvothermal/ calcination | CeO2/TiO2 | microflake/nanoneedles/ | ![]() | TiO2: 2.91, CeO2: 2.57, GTS-3CeO2/TiO2: 2.06; 3CeO2/TiO2: 1.66 eV | 5 W, LED, 400 nm | TCH | deg. 98.9% over the CeO2/TiO2 in 120 min | [ |
Solvothermal | CeO2/ ZnIn2S4 | microspheres/ nanosheets 0D/3D | ![]() 3 μm | CeO2:2.89, ZnIn2S4: 2.67 eV | 200 W Xe lamp | TCH | degr. the efficiency of 91% within 120 min | [ |
Coprecipitation | CQDs within CeO2-Fe3O4 | irregular flakes/1D | ![]() | CeO2: 2.52, Fe3O4: 1.65, CeO2-Fe3O4: 1.82, CQDs@CeO2-Fe3O4: 1.34 eV | 300-W Xe 420nm | TCH | TC degr.: 96.8% in 120 min | [ |
Hydrothermal | CeO2- Bi2W O6 | nanosheets/ 2D | ![]() | CeO2: 2.78 Bi2WO6: 1.61 eV | 500 W Xe 420 nm | TCH | degr. 90.4% in 40 min | [ |
Solvothermal | H2-reduced Mn-CeO2 | microflowers/nanotube 3D hierarchical | ![]() 2.5 μm | CeO2: 3.08, re-3M n-CeO2: 2.64, re-5 Mn-CeO2: 2.32, re-7Mn-CeO2: 2.06 eV | 500 W Xe lamp 420 nm | TCH | deg. 90.9%, 100%, and 100% after 60 min via re-3Mn-CeO2 NMs, re-5Mn-CeO2 NMs, and re-7Mn-CeO2 NMs catalysts, respectively | [ |
Pyrolysis/calcination | CeO2/ g-C3N4-3 | polygonal sheets/3D | ![]() 50-120 nm | g-C3N4: 2.90, CeO2:3.24, CeO2/g-C3N4-3:2.97 eV | 300-W Xe 420 nm | TCH | TC removal rate: 88.4% in 60 min | [ |
Hydrothermal | CeO2/g-C3N4/Bi2O4 | nanorod/ nanosheets/ 3D-2D | ![]() 1-5 μm | g-C3N4:2.62, Bi2O4: 2.0, CeO2: 2.91 eV | 300 W Xe | TCH | 94.41% TC removal efficiency in 2 h | [ |
Hydrothermal- calcination | CeO2/carbonate doped Bi2O2CO3 | spherical flower (nanosheets)/3D | ![]() 2-3 μm | 2.46/3.32 eV | 300 W, Xe lamp λ = 420 nm | Tetracycline (TC) | 79.5% TC (20 mg/L) deg. in 90 min from 35 mg/L photocatalyst | [ |
Hydrothermal | CeO2-x/ Ag4V2O7 | spherical/0D | ![]() 14.7 nm | CeO2: 3.09, CeO2-x: 2.63, CeO2-x/Ag4V2O7 (20%): 1.31&Ag4V2O7: 1.22 eV | 50 W LED lamp/visible light | TCH, azithromycin, MB, Fuchsine, Cr(IV) | deg. 94.4% TC within 300 min TC:9.48, AZM:3.80, MB:3.42, FS:3.58, and Cr (IV):1.34 | [ |
coprecipitation | CeO2-x/Ag/ AgFeO2 | spherical/0D | ![]() 10-37 nm | CeO2: 3.10, CeO2-x: 2.69, CeO2-x/Ag/AgFeO2: 1.9&Ag/AgFeO2: 1.51 eV | 50W LED lamp | TCH, azithromycin, metronidazole, cephalexin | deg. 98.6% pollutant in 100 min, TCH:55.7, AZM:49.1, MET:76.2, and CPN:71.5 in 300 min | [ |
Combustion/calcination | CeO2 QDs/ BiOX | nanoplate/3D | ![]() | BiOCl: 3.24, BiOBr: 2.74 CeO2: 2.57 eV | 100-W Xe 420nm | TCH, RhB, Cr6+ | TOC removal rate :79.36% in 2 h; Cr6+ over CeO2, BiOCl, 0.10CBC, BiOBr & 0.05CBB photocatalysts were 49%, 7%, 57%, 40% & 97%, respectively | [ |
Coprecipitation/calcination | ZnO/CeO2/ CeFeO3 | crystals/0D | ![]() | ZnO: 3.2 eV CeO2: 1.99 eV CeFeO3: 1.65 eV | 50 W LED lamp | TCH, amoxicillin, Congo red (CR), & Fuchsine | TCH: 313 × 10−4, AMX: 104 × 10−4, CR: 204 × 10−4, & fuchsine: 163 × 10−4 min−1, Cr(VI):189 × 10−4 min−1 | [ |
Hydrothermal | MoS2/CeO2 | nanosheets/2D/2D | ![]() 20 nm | MoS2: 1.32 & CeO2: 2.93 eV | λ = 420 nm | Ciprofloxacin (CIP) | 88.5% degr. of CIP within 120 min under visible light from 30% MoS2/CeO2 | [ |
Hydrothermal | PVDF/CeO2@GO-COO H | nanosheets/3D | ![]() 30-50 nm | CeO2: 3.17 CeO2@GO-COOH: 2.76 eV | UV lamp | CIP sulfanilamide | degr. 85.55% CIP & 84.82% sulfanilamide (both at 20 mg/L) in 150 min, 99.5% of CIP 79.5% sulfanilamide | [ |
Hydrothermal | CeO2/CdS/ RGO | nanospheres/1D | ![]() 30 nm | CeO2: 2.90, CeO2/CdS: 2.23, CeO2/CdS/RGO: 1.81 eV | 800 W Xe | CIP, MO, TC, RhB, MB, norfloxacin, methyl violet (MV), reactive blue BES (RB) | CIP deg. 90.04% in 120 min, MV (100.00%), MB (92.36%), RhB (89.24%), NFX (89.18%), TC (87.05%), MO (75.02%), RB (72.31%) | [ |
Co-precipitation | CeO2/ L-cysteine Bi2O2CO3 | nanosheets/2D | ![]() | CeO2: 2.22 Bi2O2CO3: 2.35 eV | visible light | CIP | deg. 95.5% of CIP | [ |
Co-precipitation | CeO2-Ag/ AgBr | spindle | ![]() | CeO2: 2.719; AgBr: 2.583 eV | visible light | CIP | deg. 65.12, 87.32, 93.05 & 80.29% for CAB-5.12, CAB-13.94, CAB-21.26, & CAB-27.43, respectively, within 120 min | [ |
Hydrothermal | CeO2/g-C3N4 | 1D-rods/3D nanosheets | ![]() | 2.51/2.71 eV | visible light | CIP | 50% deg. of CIP in 100 min | [ |
coprecipitation | CeO2/ZnO | spherical/0D | ![]() 50-200 nm | ZnO: 3.2 eV CeO2: 2.9 eV | 200 W He-Xe lamp | CIP | 1.0 mg/mL catalysts deg. 62% | [ |
hydrothermal | CeO2@cGO | nanosheets/2D | ![]() 10-30 nm | CeO2: 3.17, CeO2@cGO: 2.76 eV | 30 W, λ = 253.7 (UV) > 380 (visible) | CIP/CPX | deg.CPX 59.82, 73.21, 68.11 & 44.63%, for Ce@cGO25, Ce@cGO50, Ce@cGO75 & pure CeO2 | [ |
Hydrothermal | Cd0.5Zn0.5S/ CeO2 | nanoplates/2D | ![]() 534-934 nm | CeO2: 2.75 eV, Cd0.5Zn0.5S: 2.20 eV | 100 W, Xe lamp | CIP, Cr+6 | CIP deg. 86% within 30 min; Cr(VI) deg. 100%; 30 mg/L catalyst 50 mg, 5 mg/L | [ |
thermal decomposition | Ag2O/CeO2 p-n heteroju ction | spindle | ![]() | CeO2: 2.72 eV Ag2O: 1.30 eV | 300 W Xe lamp Vis light | Enrofloxacin (EFA) | deg. 65.19, 78.21, 87.11, and 71.18% of EFA | [ |
Calcination | Fe2O3/CeO2/ZnO | irregular spherical/0D | ![]() | Fe2O3: 2.26, CeO2: 2.91, ZnO: 3.2, 30FeCe/ZnO: 2.86 eV | 300 W Xe | Levofloxacin (LEF) | degr. 98.9% LEF catalyst dosage of 0.69 g/L in 83.64 min, initial concentration of 37.9 mg/L | [ |
Hydrothermal | CeO2/Bi2O4 Z-scheme | rod shape/2D | ![]() 3-5 µm | CeO2: 2.54, CBO-1: 1.85, CBO-2: 1.88, CBO-4: 1.75, CBO-5: 2.00, Bi2O4: 1.90 eV | 300-W Xe 420 nm | Levofloxacin &MO | Levofloxacin: 88.75% & MO: 90.3% | [ |
Sol-gel/com bustion method | ZnO-CeO2- Ag2O | spherical/0D | ![]() 14.3-24.3 nm | 3.38, 3.35, 3.33 eV | UV | MB, RhB | deg. 93.81% MB and 97.44% RhB in 105 min | [ |
Coprecipitation | CeO2/BiOCl/Ag2WO4 | flower-like | ![]() | CeO2: 2.94, BiOCl: 3.52, Ag2WO4: 2.92 eV | visible light | MB, crystal violet | deg. 97% of MB & 98% of crystal violet in 75 min 50 mg/mL NC | [ |
microwave/coprecipitation | CuO/CeO2 p-n junction | spherical/ 0D | ![]() | CeO2: 2.95, CuO: 1.85, 1/2Cu/Ce: 2.51, 1/3Cu/Ce: 2.46, 1/4 Cu/Ce: 2.67, & 1/6Cu/Ce: 2.82 eV | 500 W Hg lamp | MB | deg. 96.2% within 180 min | [ |
coprecipitation | CeO2/Ag/CdS/CF | 3D-nanostructures | ![]() | CeO2: 3.05, CdS: 2.1 eV | 300 W xenon lamp | MB, RhB, MO | deg. 89.4% of MB, 71.9% of RhB, and 72.8% of MO in 180 min | [ |
Coprecipitation/Hydrothermal | CeO2/ZnO@Au | nanorods/1D | ![]() 40 nm | CeO2: 3.19 eV ZnO: 3.28 eV | 350 W, Xe lamp | RhB, naproxen (NPX), 4-nitrophen ol | deg. 100%(RhB) within 20 min, 91.4% (nitrophenol) within 60 min and 88.9% (NPX) within 30 min | [ |
Hydrothermal | Ag/Au-ZnO/CeO2 | flower-like microspheres/nanosheets/3D | ![]() 30-500 nm | ZnO: 3.17, CeO2: 3.03, ZnO/CeO2-X: 3.16, 3.11 & 3.00 eV, (X = 1:30, 3:30, 5:30) | 300 W, Xe lamp, λ = 320 nm | methane, ethane | 1.0%Ag-ZnO/CeO2 & 1.5% Au-ZnO/CeO2 show 100% degradation in 360 min | [ |
Hydrothermal/precipitation | Pt/CeO2/ ZnO | nanorods/1D | ![]() 3-3.5 μm, 400 nm | ZnO & CeO2/ZnO: ~3.15 eV, CeO2: 2.98 eV | UV light | Phenol | 91% phenol degraded in 60 min | [ |
Wet-chemical | CeO2/g-C3N4 | triangular | ![]() 2-5 μm | CeO2/CN: 2.78-2.88 eV, CeO2: 2.90; CN: 2.74 | λ>360 nm & λ> 420 nm | Methylparaben (MP) | deg. 10:46; 25:39; 50:33; 75:13; & 90:7%, CeO2/CN for MP in 2 hrs | [ |
Hydrothermal | CeO2/SnS2/ PANI | Cubic/hexagonal/1D | ![]() | CeO2/SnS2/PANI: 2.19, CeO2/SnS2: 2.20, CeO2: 3.06, SnS2: 2.15, PANI: 1.56 eV | 300 WXe 420 nm | Cr+6 | 99% Cr(VI) removal | [ |
Hydrothermal | CeO2@CNTs/CdSe | spherical/nanosheets/3D | ![]() 100-360 nm | CeO2: 2.92; CNTs: 3.04; CdSe: 1.79 CeO2@CNTs: 2.53; CeO2@CNTs/CdSe: 1.71 | 300 W Xe, 420 nm | Congo red/Cr6+ | degr. 83.58% CR 100% of Cr(VI) | [ |
Ultrasonic-assisted gel process | MnCo2O4/ CeO2 | spherical/0D | ![]() 10-15 nm | CeO2: 2.86 eV MnCo2O4/CeO2: 2.31, 2.32 eV | 420 nm Xe lamp | Cr+6 | 100% within 45 min | [ |
Wet chemical method | CeO2/ CaIn2S4 (CCIS) | flower-like/3D | ![]() | CeO2: 2.39 CaIn2S4: 1.79 eV | 300 W Xe UV lamp | Cr6+ | 95% Cr(Ⅵ) reduction activity within 105 min | [ |
Sol-gel/ball milling | SrNiO3 perovskite/ CeO2 | crystals | ![]() 541 Å | SrNiO3: 2.90 eV CeO2: 3.18 eV | 1500 W, Xe, 365-630 or 14 mW, UV LED | 2-propanol oxidation in gas-solid | degradation of 2-propanol after 1.5 h or 6.0 h | [ |
ultrasonic-assisted method | CeO2@WO3 heterojunction | spherical/0D | ![]() 20.92-63 nm | 2.61-3.02 eV | 400 nm Xe lamp | cephalexin (CPX) | deg. 96.24, catalyst amount: 0.19 g/L, Conc. CPX: 20 mg/L, within 94.8 min | [ |
Hydrothermal/Coprecipitation | WO3/CeO2 | hollow microspheres | ![]() 40-50 nm | WO3: 2.74 eV, CeO2: 2.81 eV WO3/CeO2: 2.68 eV, | 200W, Xe 420 nm | sulfamerazine | 0.5 mg/mL catalyst deg. 100% in 3 h | [ |
Sonication- calcination | CeO2/WO3/AC | spherical/0D | ![]() 20-50 nm | WO3: 3.30 eV, CeO2: 2.30 eV | 500 W, Xe lamp >400 nm | doxycycline (DOX) | deg. 97.23%, catalyst dose: 0.2-1.4 g/L, DOX conc.: 10-50 ppm, irradiation time: 20-140 min, pH: 2-10 | [ |
hydrothermal | CeO2/ZnO | tie/nanorods/1D-3D | ![]() 700/4 μm | ZnO: 3.1-3.4 CeO2: 2.7-3.4 eV | 300 W lamp | reactive orange 16 dye | Degr. 90% of RO16 dye in 180 min | [ |
Sol-gel | PdO/CeO2 p-n junction | Spherical/0D | ![]() 10 nm | CeO2: 2.94; PdO/CeO2: 2.53, 2.49, 2.08, & 2.05 eV | 300 W Xe lamp 420 nm | Hg2+ | deg. 100% for Hg2+ reduction in 40 min rate constant: 0.106 min−1 | [ |
Hydrothermal | CeO2-g-C3N4/TiO2 | pearl shaped/nanosheets/3D | ![]() | g-C3N4: 2.79, TiO2: 3.16, g-C3N4/TiO2: 2.56, CeO2/TiO2: 3.16, CeO2-g-C3N4/Ti O2: 2.64 eV | 254 nm UV lamp 20 W | mercury (Hg0) | photooxidation of Hg0 98.6% at 150 °C and 93.1% at 250 °C, | [ |
Hydrothermal | MoS2-CeO2/SiO2-Al2O3 | plates particles/3D | ![]() 13-36 nm | 3.1 eV | 150 W, visible light | dibenzothiophene (DBT) | dibenzothiophene (96.9%) 3 h | [ |
microwave-hydrothermal | F and Fe co-doped CeO2 | spherical/0D | ![]() | CeO2: 2.80 eV, FC-2: 2.68 eV, FC-5: 2.60 eV, FC-10: 2.43 eV | 500 W, halide 420 nm | 2,4,6-trichlorophenol | removal:99.8% & de-chlorination: 89%) rates of 2,4,6-TCP within 4 h | [ |
hydrothermal | Cd/Ni@CeO2 | nanorods 1D | ![]() | CeO2:2.92 eV, Cd@CeO2: 2.68, Ni@CeO2: 2.79, Cd/Ni@CeO2: 2.57 eV | visible light | 4,6-dimethyldibenzothiophene (4,6-dMDBT) | 100% desulfurization of 4,6-DMDBT within 50 min at 60 °C, | [ |
Coprecipitation/calcination | AgInS2@ CeO2-x S-scheme | heterogeneous structure/2D | ![]() | CeO2:2.7 eV, AgInS2: 1.7 eV | UV lamp | xylose oxidation | xylonic acid yield & CO evolution rate 60.0% & 3689.9 μmol g−1 h−1 | [ |
solvothermal | 3% Cu-CeO2/ BiOBr | hydrangea-like/flower ball/3D | ![]() | Cu-CeO2: 2.65 BiOBr: 2.82 eV | 300-W Xe | sulfathiazole | degr.92.3% within 90 min when treating 20 mg L−1 STZ solution | [ |
Ultrasonic | CuBi2O4/ CeO2-x | nanorods 2D | ![]() 30-150 nm | CuBi2O4: 1.70, CeO2-x: 2.92 eV | 300 W Xe lamp | toluene | 1800 ppm i 2 h, 87.05%CO2 yield, 89.33% total organic carbon removal rate | [ |
Ultrasonication | Cu-BTC@CuS@CeO2 p-n junction | hollow octahedrons | ![]() | Cu-BTC: 2.58, CeO2: 2.72, CuS: 2.10 eV | 300 WXe 400/1100 nm | amine oxidation | 32% and 34% hydroquinone oxidation via NIR light illumination | [ |
Calcination | g-C3N4/7Ag/ m-CeO2 | nanosheets/2D | ![]() | m-CeO2: 3.01, 7Ag/m-CeO2: 2.7 5, g-C3N4/7Ag/m-CeO2: 2.54 eV | 500 W Xe 420 nm | carbon monoxide & methane conversion | CO & CH4 photoconversion efficiency was 13.94 μmol g−1 & 7.39 μmol g−1 | [ |
Hydrothermal | BiOI@CeO2@Ti3C2 | flower microspheres /3D | ![]() 1.8-2.2 μm | BiOI: 1.67, CeO2: 2.66, BiOI@CeO2@Ti3C2: 1.57, CeO2@Ti3C2: 2.21 eV | 100 Xe lamp | E. coli and S. aureus | 99.76% & 99.89% photo-catalytic bacteriostatic efficiency against Escherichia coli and Staphylococcus aureus | [ |
Hydrothermal | g-C3N4/ Bi2MoO6/ CeO2 | nanosheets/3D | ![]() 5 nm | CeO2:2.75, Bi2MoO6:2.69, g-C3N4:2. 63 eV | 300 WXe 420 nm | chlorophenol | degradation efficiency of 99.1% for 4-CP under 80 min illumination | [ |
coprecipitation | Ag/Ag3PO4/CeO2 | spherical/0D | ![]() 300-500 nm | CeO2:2.78 Ag3PO4:2.28 eV | 300 W Xe | C6H6 & HCHO | 90.18% removal rate & 74.17% TOC efficiency within 3 h 46.72% CO2 production rate, 86.01% and 65.83% for gaseous HCHO | [ |
Pyrolysis/ calcination | YFeO3/CeO2 | porous morphology | ![]() | YFeO3/CeO2:1.74, YFeO3:1.90, CeO2: 2.86 eV | 300 W Xe 100 mW cm−2 | reactive black 5 (RB5) | degr. 75.2% under visible light | [ |
Hydrothermal | carbon cloth/TiO2/ CeO2 | nanorod/fibre/3D | ![]() | TiO2:3.25, TiO2 NRs: 3.02, CC/TiO2NRs@CeO2NPs: 2.58 eV | Xe lamp /100 mW cm−2 | unsymmetrical dimethylhydrazine | degr. 97.3% of highly toxic byproducts | [ |
Hydrothermal | Fe/CeO2 | nanorods/2D | ![]() | Fe/CeO2-r: 2.90, Fe/CeO2-c: 3.01, CeO2-r: 3.09, CeO2-c: 3.21 eV | 300 W Xe | CH3CHO or RhB, volatile organic compounds | CO2: 260.45 ppm in 12 h, CH3CHO degr.: 21.7 ppm h−1 within 12 h | [ |
Sol-gel | CeO2@ CdS-Cu8S5 | hollow spheres | ![]() 780 nm | CeO2: 2.72, CdS:2.39, Cu8S5:1.38 eV | 300-W Xe 400nm | CO2 reduction | CO2 deoxygenation to CH4: 18.25 µmol/(g·h) & high selectivity: 89.3% | [ |
Hydrothermal | Ag-CeO2- ZnO | nanoflower/3D | ![]() 60/102 nm | 1AgCZ: 3.17, 2AgCZ: 3.12, AgCZ: 2.91, AgCZ: 3.02 eV | 300 W, Xe lamp, 420nm | CO2 photoreduction | CO & CH4 evolution rates on 3AgCZ were ∼377.75 and ∼20.12 μmol/g under mimicked sunlight. | [ |
Ultrasonication | CuS@CeO2 p-n junction | hollow Cubes/3D | ![]() | CuS: 2.29, CeO2: 2.69 eV | 300W Xe | CO&CH4 production | CO:195.8 μmol/(g·h) & CH4: 19.96 μmol/(g·h) yields optim- ized; CO:87.6 μmol/(g·h) & CH4: 11.4 μmol/(g·h) production rates | [ |
Molten liquid/ calcination | Au/Co3O4- CeO2 | nanorods/nanosheets/3D | ![]() 10 nm | UV lamp | CO | highest CO oxidation activity at 150 °C | [ | |
Waterbath/ calcination | CeO2/Cr2O3 | spherical | N2 fixation; isopropanol | air purification,energy conversion | [ | |||
Hydrothermal | β-Bi2O3/ CeO2-δ p-n junction | flower-like microstructures/nanosheets/3D | ![]() 1.5-3.0 µm | CeO2: 2.88, β-Bi2O3: 2.39 eV | 300-W Xe 420 nm | nitrogen dioxide | removal rate: 38.5, 42.9, 40.1, 38.7%, of 2/4/6/8% β-Bi2O3/ CeO2-δ composites | [ |
Thermal polymerization | CeO2−x/ g-C3N4−x | island shaped 2D | ![]() | CeO2: 3.11 g-C3N4: 2.89 eV | 300 W Xe | NO removal | 73.8% NO removal efficiency | [ |
Hydrothermal | Co(OH)2/ CeO2-g-C3N4 | porous particles/10D | ![]() | g-C3N4: 2.73, Co(OH)2: 1.27, CeO2: 3.03 50CoCe-CN:2.66 eV | 300-W Xe 420nm | NO (NO2) | 53.5% NO removal rate | [ |
hydrothermal | CQDs/CeO2 | cubic block /0D | ![]() 11 nm | CeO2: 2.65, CQDs/CeO2: 2.649, CQDs/CeO2: 2.68, &3-CQDs/CeO2: 2.59 eV | 500 W Xenon lamp | nitrogen fixation | photocatalytic nitrogen fixation: 826 μmol/(g·h) | [ |
Hydrothermal | Y- CeO2/g-C3N4(YCC) | octahedral/nanosheets/3D | ![]() 100 nm | CeO2/PCN: 2.72, YCC: 2.66 eV | 250 W Xe, 420 nm | H2 generation, RhB, Cr6+ | YCC: degr. RhB:97.12% in 360 min, H2 production rate: 48.5 μmol/h | [ |
Hydrothermal | ZnIn2S4/rGO/CeO2 Z-scheme | spherical/nanosheets/rod-shaped /2D | ![]() 5 µm | CeO2: 2.75, ZnIn2 S4: 2.44; CeO2-rG O: 2.69, ZnIn2S4-rGO: 2.36, CeO2-ZnIn2S4: 2.08, ZnIn2S4-rGO-CeO2: 1.98 eV | 150 W Xe lamp | H2 generation &TCH | H2 production: 2855 μmol/(g·h) TC degr.: 94.5% | [ |
Hydrothermal | D-CeO2/Cd ZnS/ZnO | spherical nanosheets/3D | ![]() | CeO2: 2.90 eV | 300 W Xe; 420 nm | H2 generation | 22.11 mmol/(g·h) | [ |
Ultrasonication | CeO2/CdS | hollow 1D | ![]() | CeO2: 2.9 CdS: 2.48 eV, | 300 W Xe | H2 production | H2 production efficiency: ∼12.6 mmol/(g·h) and maintains a high value over 25 h | [ |
Ultrasonic chemical | CeO2@MoS2/g-C3N4 | nanosheets 0D/2D | ![]() 19.7 nm | MoS2: 1.81, g-C3N4: 2.69, CeO2: 3.06 eV | 420 nm visible | H2 evolution | 65.4 μmol/h production activity | [ |
Thermal polymerization/Solvothermal | Co-CeO2/ g-C3N4 | irregular nanosheets/3D | ![]() 8 nm | DCN: 2.46 Co-CeO2: 1.50 eV | 300W Xe 400 nm | H2 production | 1077.02 μmol/(g·h), H2 evolution rate | [ |
Hydrothermal | Co3O4/CeO2 p-n junction | nanorods/2D | ![]() | Co3O4: 1.76 CeO2: 2.55 eV | 300 W Xe | H2 production | 2298.52 μmol/(g·h), H2 generation efficiency | [ |
Hydrolysis | N-doped CeO2-δ@ZnIn2S4 | nanosheets/2D | ![]() | CeO2: ∼3.56, N-CeO2-δ: ∼3.12 & Zn In2S4: ∼2.54 eV | 300 W Xe lamp | H2 evolution/water splitting | ∼798 μmol/(g·h), H2 generation efficiency | [ |
Hydrothermal | CuInS2/CeO2 | nanowires/2D | ![]() | CuInS2: 1.34 eV CeO2: 3.28 eV | 300 W Xe lamp | H2 production | 226.6 μmol/(g·h), H2 generation efficiency | [ |
Hydrothermal | C/N-CeO2/ MgIn2S4 | nanorod/ nanoflower /1D/2D | ![]() | C/N-CeO2: 2.3 eV MgIn2S4: 0.91 eV | UV-visible light | H2O2 and H2 production | 2520.4 μmol/(g·h) and 419.2 μmol/h H2O2 and H2 evolution efficiency | [ |
Coprecipitation | ZnO- CeO2-Ag | nanosheets- rods/2D-1D | ![]() 22.4-33.5 nm | ZnO: 2.92 eV CeO2: 2.58 eV | 300 W Xe | H2 evolution | 31420 μmol/(g·h), H2 generation efficiency | [ |
Hydrothermal/ultrasonication | α-Fe2O3/ CeO2 | nanorods | ![]() CeO2:400/20 nm, Fe2O3: 10 nm | Fe2O3/CeO2: 2.96, 2.52, 2.49, 2.05 & 1.99 eV | visible light | H2 production | 2973.2 µmol/(g·h), H2 generation efficiency | [ |
Hydrothermal | CeO2/ZnO | sheets/ petals/2D | ![]() 71 nm | ZnO: 3.07 eV CeO2: 2.97 eV | 300 W, λ = 380, 780 nm | H2 production | photodeg. 97.4% after 150 min, H2 production 63.59 mmol/g. H2 production 27.104 mmol/g in 3 h, | [ |
Table 4 CeO2-derived HHJ photocatalysts for degradation of various pollutants and energy conversion under photocatalytic reaction.
Synthesis method | Nanocomposite | Shapes/Dimensionality | Morphology/ size (TEM) | Bandgap (Eg) | Light source | Pollutant | Photocatalytic activity %deg. | Ref. |
---|---|---|---|---|---|---|---|---|
Hydrothermal/sol-gel/ ultrasonic | CeO2-TiO2/PANI/ NiFe2O4 | spheres/rods 0D/1D | ![]() | TiO2:3.1, CeO2:2.2, NiFe2O4:1.5, CeO2-TiO2:2.4, CeO2-TiO2/NiFe2O4: 1.8&CeO2-TiO2/PANI/ NiFe2O4:1.6 eV | visible light | TCH | 92.6% degr. within 60 min | [ |
Hydrothermal | CeO2-x/ BiCrO3 | spherical/0D | ![]() | CeO2-x:2.66 & BiCrO3: 2.51 eV | visible light | TCH, MET, AZM, CPN | deg. of MET, AZM, CPN, MB, MO, & CR by 15% NC was 11.4, 11.7, 23.0, 4.55, 21.6, and 11.0, respectively | [ |
Self- assembled | CeO2/ BiOCl S-scheme | nnanosheets /2D | ![]() | CeO2: 2.59 eV BiOCl: 3.30 eV | UV | TCH, doxycycline, and oxytetracycline | degr. TC: 91.02%, CTC: 92.27%, DOC: 87.75%, OTC: 87.82% within 150 min | [ |
Hydrothermal | BiOCl@CeO2 | Hollow microspheres/2D | ![]() 200-300 nm | BiOCl: 3.29 eV, CeO2: 3.08 eV BiOCl@CeO2: 2.25 eV | 300 W Xe lamp 420 nm | TCH | 10 mg/L catalyst deg. ~90% in 120 min | [ |
Hydrothermal | β-Bi2O3@CeO2 | hollow microspheres/2D | ![]() 1.63-1.87 µm | Bi2O3@CeO2: 2.38 eV CeO2: 3.05 eV | 500 W Xe lamp 420 nm | TCH | 10 mg/L catalyst deg. ~92% in 180 min | [ |
Hydrothermal | BiOI/g-C3N4 /CeO2 | microspheres /2D | ![]() 2-3 µm | g-C3N4: 2.72 eV BiOI: 1.92 eV CeO2: 2.58 eV | 300 W Xe lamp 420 nm | TCH | 20 mg/L catalyst deg. 91.6% in 120 min | [ |
Molten salt calcination | CeO2/ Bi2MoO6 | spherical/ nanosheets, 0D/2D | ![]() | CeO2: 2.69 Bi2MoO6: 2.86 eV | 5 W white LED | TCH | 10 mg/L catalyst deg. 91% in 180 min | [ |
Sol-gel/calcination | MgAl2O4/ CeO2/YMnO3 | spherical/0D | ![]() | 1.45 eV | 200 W, Xe lamp | TCH | 1.0 mg/mL catalysts deg. 97.83% | [ |
coprecipitation | Ag2O/ AgBr-CeO2 | nanosheets/ 3D | ![]() 1-5 μm | CeO2: 2.98, AgBr: 2.56 eV, Ag2O: 1.34 eV | 500 W X lamp, 420nm | TCH | deg. 93.23% within 60 min | [ |
Ultrasonic-assisted, calcination | CeO2-WO3 | spherical/0D | ![]() 32.9-63 nm | WO3: 2.26 eV | 400 nm Xe lamp | TC | deg. 94.28%, pH: 6.92 | [ |
Hydrothermal | WO3/CeO2 | microspheres/ nanosheets, 2D | ![]() 4.5 μm | CeO2: 2.62eV, WO3: 2.58 eV | 300 W Xe lamp | TCH | deg. 99% of in 80 min, TC photodegradation efficiency of 0.0482 min−1 | [ |
Sonochemical/calcination | Fe2O3-CeO2-SiO2 | spherical/0D | ![]() 60-70 nm | CeO2: 2.96 eV Fe2O3-CeO2-SiO2: 2.86 eV | visible lamp | TCH | deg. 95.90%, TC conc.: 25.1 mg/L, photocatalyst dose: 0.62 g/L, visible time: 94.2 min, pH: 4.89 | [ |
Ultrasonication/calcination | Fe2O3/Bi2O3/CeO2 | sphericals/0D | ![]() | Fe2O3: 2.23eV Bi2O3: 2.79eV CeO2: 2.92eV | >400 nm visible | TCH | deg. 99.35%, catalyst dosage: 0.15 g/L, TC conc.: 20 mg/L, pH: 5 | [ |
Solvothermal/ calcination | CeO2/TiO2 | microflake/nanoneedles/ | ![]() | TiO2: 2.91, CeO2: 2.57, GTS-3CeO2/TiO2: 2.06; 3CeO2/TiO2: 1.66 eV | 5 W, LED, 400 nm | TCH | deg. 98.9% over the CeO2/TiO2 in 120 min | [ |
Solvothermal | CeO2/ ZnIn2S4 | microspheres/ nanosheets 0D/3D | ![]() 3 μm | CeO2:2.89, ZnIn2S4: 2.67 eV | 200 W Xe lamp | TCH | degr. the efficiency of 91% within 120 min | [ |
Coprecipitation | CQDs within CeO2-Fe3O4 | irregular flakes/1D | ![]() | CeO2: 2.52, Fe3O4: 1.65, CeO2-Fe3O4: 1.82, CQDs@CeO2-Fe3O4: 1.34 eV | 300-W Xe 420nm | TCH | TC degr.: 96.8% in 120 min | [ |
Hydrothermal | CeO2- Bi2W O6 | nanosheets/ 2D | ![]() | CeO2: 2.78 Bi2WO6: 1.61 eV | 500 W Xe 420 nm | TCH | degr. 90.4% in 40 min | [ |
Solvothermal | H2-reduced Mn-CeO2 | microflowers/nanotube 3D hierarchical | ![]() 2.5 μm | CeO2: 3.08, re-3M n-CeO2: 2.64, re-5 Mn-CeO2: 2.32, re-7Mn-CeO2: 2.06 eV | 500 W Xe lamp 420 nm | TCH | deg. 90.9%, 100%, and 100% after 60 min via re-3Mn-CeO2 NMs, re-5Mn-CeO2 NMs, and re-7Mn-CeO2 NMs catalysts, respectively | [ |
Pyrolysis/calcination | CeO2/ g-C3N4-3 | polygonal sheets/3D | ![]() 50-120 nm | g-C3N4: 2.90, CeO2:3.24, CeO2/g-C3N4-3:2.97 eV | 300-W Xe 420 nm | TCH | TC removal rate: 88.4% in 60 min | [ |
Hydrothermal | CeO2/g-C3N4/Bi2O4 | nanorod/ nanosheets/ 3D-2D | ![]() 1-5 μm | g-C3N4:2.62, Bi2O4: 2.0, CeO2: 2.91 eV | 300 W Xe | TCH | 94.41% TC removal efficiency in 2 h | [ |
Hydrothermal- calcination | CeO2/carbonate doped Bi2O2CO3 | spherical flower (nanosheets)/3D | ![]() 2-3 μm | 2.46/3.32 eV | 300 W, Xe lamp λ = 420 nm | Tetracycline (TC) | 79.5% TC (20 mg/L) deg. in 90 min from 35 mg/L photocatalyst | [ |
Hydrothermal | CeO2-x/ Ag4V2O7 | spherical/0D | ![]() 14.7 nm | CeO2: 3.09, CeO2-x: 2.63, CeO2-x/Ag4V2O7 (20%): 1.31&Ag4V2O7: 1.22 eV | 50 W LED lamp/visible light | TCH, azithromycin, MB, Fuchsine, Cr(IV) | deg. 94.4% TC within 300 min TC:9.48, AZM:3.80, MB:3.42, FS:3.58, and Cr (IV):1.34 | [ |
coprecipitation | CeO2-x/Ag/ AgFeO2 | spherical/0D | ![]() 10-37 nm | CeO2: 3.10, CeO2-x: 2.69, CeO2-x/Ag/AgFeO2: 1.9&Ag/AgFeO2: 1.51 eV | 50W LED lamp | TCH, azithromycin, metronidazole, cephalexin | deg. 98.6% pollutant in 100 min, TCH:55.7, AZM:49.1, MET:76.2, and CPN:71.5 in 300 min | [ |
Combustion/calcination | CeO2 QDs/ BiOX | nanoplate/3D | ![]() | BiOCl: 3.24, BiOBr: 2.74 CeO2: 2.57 eV | 100-W Xe 420nm | TCH, RhB, Cr6+ | TOC removal rate :79.36% in 2 h; Cr6+ over CeO2, BiOCl, 0.10CBC, BiOBr & 0.05CBB photocatalysts were 49%, 7%, 57%, 40% & 97%, respectively | [ |
Coprecipitation/calcination | ZnO/CeO2/ CeFeO3 | crystals/0D | ![]() | ZnO: 3.2 eV CeO2: 1.99 eV CeFeO3: 1.65 eV | 50 W LED lamp | TCH, amoxicillin, Congo red (CR), & Fuchsine | TCH: 313 × 10−4, AMX: 104 × 10−4, CR: 204 × 10−4, & fuchsine: 163 × 10−4 min−1, Cr(VI):189 × 10−4 min−1 | [ |
Hydrothermal | MoS2/CeO2 | nanosheets/2D/2D | ![]() 20 nm | MoS2: 1.32 & CeO2: 2.93 eV | λ = 420 nm | Ciprofloxacin (CIP) | 88.5% degr. of CIP within 120 min under visible light from 30% MoS2/CeO2 | [ |
Hydrothermal | PVDF/CeO2@GO-COO H | nanosheets/3D | ![]() 30-50 nm | CeO2: 3.17 CeO2@GO-COOH: 2.76 eV | UV lamp | CIP sulfanilamide | degr. 85.55% CIP & 84.82% sulfanilamide (both at 20 mg/L) in 150 min, 99.5% of CIP 79.5% sulfanilamide | [ |
Hydrothermal | CeO2/CdS/ RGO | nanospheres/1D | ![]() 30 nm | CeO2: 2.90, CeO2/CdS: 2.23, CeO2/CdS/RGO: 1.81 eV | 800 W Xe | CIP, MO, TC, RhB, MB, norfloxacin, methyl violet (MV), reactive blue BES (RB) | CIP deg. 90.04% in 120 min, MV (100.00%), MB (92.36%), RhB (89.24%), NFX (89.18%), TC (87.05%), MO (75.02%), RB (72.31%) | [ |
Co-precipitation | CeO2/ L-cysteine Bi2O2CO3 | nanosheets/2D | ![]() | CeO2: 2.22 Bi2O2CO3: 2.35 eV | visible light | CIP | deg. 95.5% of CIP | [ |
Co-precipitation | CeO2-Ag/ AgBr | spindle | ![]() | CeO2: 2.719; AgBr: 2.583 eV | visible light | CIP | deg. 65.12, 87.32, 93.05 & 80.29% for CAB-5.12, CAB-13.94, CAB-21.26, & CAB-27.43, respectively, within 120 min | [ |
Hydrothermal | CeO2/g-C3N4 | 1D-rods/3D nanosheets | ![]() | 2.51/2.71 eV | visible light | CIP | 50% deg. of CIP in 100 min | [ |
coprecipitation | CeO2/ZnO | spherical/0D | ![]() 50-200 nm | ZnO: 3.2 eV CeO2: 2.9 eV | 200 W He-Xe lamp | CIP | 1.0 mg/mL catalysts deg. 62% | [ |
hydrothermal | CeO2@cGO | nanosheets/2D | ![]() 10-30 nm | CeO2: 3.17, CeO2@cGO: 2.76 eV | 30 W, λ = 253.7 (UV) > 380 (visible) | CIP/CPX | deg.CPX 59.82, 73.21, 68.11 & 44.63%, for Ce@cGO25, Ce@cGO50, Ce@cGO75 & pure CeO2 | [ |
Hydrothermal | Cd0.5Zn0.5S/ CeO2 | nanoplates/2D | ![]() 534-934 nm | CeO2: 2.75 eV, Cd0.5Zn0.5S: 2.20 eV | 100 W, Xe lamp | CIP, Cr+6 | CIP deg. 86% within 30 min; Cr(VI) deg. 100%; 30 mg/L catalyst 50 mg, 5 mg/L | [ |
thermal decomposition | Ag2O/CeO2 p-n heteroju ction | spindle | ![]() | CeO2: 2.72 eV Ag2O: 1.30 eV | 300 W Xe lamp Vis light | Enrofloxacin (EFA) | deg. 65.19, 78.21, 87.11, and 71.18% of EFA | [ |
Calcination | Fe2O3/CeO2/ZnO | irregular spherical/0D | ![]() | Fe2O3: 2.26, CeO2: 2.91, ZnO: 3.2, 30FeCe/ZnO: 2.86 eV | 300 W Xe | Levofloxacin (LEF) | degr. 98.9% LEF catalyst dosage of 0.69 g/L in 83.64 min, initial concentration of 37.9 mg/L | [ |
Hydrothermal | CeO2/Bi2O4 Z-scheme | rod shape/2D | ![]() 3-5 µm | CeO2: 2.54, CBO-1: 1.85, CBO-2: 1.88, CBO-4: 1.75, CBO-5: 2.00, Bi2O4: 1.90 eV | 300-W Xe 420 nm | Levofloxacin &MO | Levofloxacin: 88.75% & MO: 90.3% | [ |
Sol-gel/com bustion method | ZnO-CeO2- Ag2O | spherical/0D | ![]() 14.3-24.3 nm | 3.38, 3.35, 3.33 eV | UV | MB, RhB | deg. 93.81% MB and 97.44% RhB in 105 min | [ |
Coprecipitation | CeO2/BiOCl/Ag2WO4 | flower-like | ![]() | CeO2: 2.94, BiOCl: 3.52, Ag2WO4: 2.92 eV | visible light | MB, crystal violet | deg. 97% of MB & 98% of crystal violet in 75 min 50 mg/mL NC | [ |
microwave/coprecipitation | CuO/CeO2 p-n junction | spherical/ 0D | ![]() | CeO2: 2.95, CuO: 1.85, 1/2Cu/Ce: 2.51, 1/3Cu/Ce: 2.46, 1/4 Cu/Ce: 2.67, & 1/6Cu/Ce: 2.82 eV | 500 W Hg lamp | MB | deg. 96.2% within 180 min | [ |
coprecipitation | CeO2/Ag/CdS/CF | 3D-nanostructures | ![]() | CeO2: 3.05, CdS: 2.1 eV | 300 W xenon lamp | MB, RhB, MO | deg. 89.4% of MB, 71.9% of RhB, and 72.8% of MO in 180 min | [ |
Coprecipitation/Hydrothermal | CeO2/ZnO@Au | nanorods/1D | ![]() 40 nm | CeO2: 3.19 eV ZnO: 3.28 eV | 350 W, Xe lamp | RhB, naproxen (NPX), 4-nitrophen ol | deg. 100%(RhB) within 20 min, 91.4% (nitrophenol) within 60 min and 88.9% (NPX) within 30 min | [ |
Hydrothermal | Ag/Au-ZnO/CeO2 | flower-like microspheres/nanosheets/3D | ![]() 30-500 nm | ZnO: 3.17, CeO2: 3.03, ZnO/CeO2-X: 3.16, 3.11 & 3.00 eV, (X = 1:30, 3:30, 5:30) | 300 W, Xe lamp, λ = 320 nm | methane, ethane | 1.0%Ag-ZnO/CeO2 & 1.5% Au-ZnO/CeO2 show 100% degradation in 360 min | [ |
Hydrothermal/precipitation | Pt/CeO2/ ZnO | nanorods/1D | ![]() 3-3.5 μm, 400 nm | ZnO & CeO2/ZnO: ~3.15 eV, CeO2: 2.98 eV | UV light | Phenol | 91% phenol degraded in 60 min | [ |
Wet-chemical | CeO2/g-C3N4 | triangular | ![]() 2-5 μm | CeO2/CN: 2.78-2.88 eV, CeO2: 2.90; CN: 2.74 | λ>360 nm & λ> 420 nm | Methylparaben (MP) | deg. 10:46; 25:39; 50:33; 75:13; & 90:7%, CeO2/CN for MP in 2 hrs | [ |
Hydrothermal | CeO2/SnS2/ PANI | Cubic/hexagonal/1D | ![]() | CeO2/SnS2/PANI: 2.19, CeO2/SnS2: 2.20, CeO2: 3.06, SnS2: 2.15, PANI: 1.56 eV | 300 WXe 420 nm | Cr+6 | 99% Cr(VI) removal | [ |
Hydrothermal | CeO2@CNTs/CdSe | spherical/nanosheets/3D | ![]() 100-360 nm | CeO2: 2.92; CNTs: 3.04; CdSe: 1.79 CeO2@CNTs: 2.53; CeO2@CNTs/CdSe: 1.71 | 300 W Xe, 420 nm | Congo red/Cr6+ | degr. 83.58% CR 100% of Cr(VI) | [ |
Ultrasonic-assisted gel process | MnCo2O4/ CeO2 | spherical/0D | ![]() 10-15 nm | CeO2: 2.86 eV MnCo2O4/CeO2: 2.31, 2.32 eV | 420 nm Xe lamp | Cr+6 | 100% within 45 min | [ |
Wet chemical method | CeO2/ CaIn2S4 (CCIS) | flower-like/3D | ![]() | CeO2: 2.39 CaIn2S4: 1.79 eV | 300 W Xe UV lamp | Cr6+ | 95% Cr(Ⅵ) reduction activity within 105 min | [ |
Sol-gel/ball milling | SrNiO3 perovskite/ CeO2 | crystals | ![]() 541 Å | SrNiO3: 2.90 eV CeO2: 3.18 eV | 1500 W, Xe, 365-630 or 14 mW, UV LED | 2-propanol oxidation in gas-solid | degradation of 2-propanol after 1.5 h or 6.0 h | [ |
ultrasonic-assisted method | CeO2@WO3 heterojunction | spherical/0D | ![]() 20.92-63 nm | 2.61-3.02 eV | 400 nm Xe lamp | cephalexin (CPX) | deg. 96.24, catalyst amount: 0.19 g/L, Conc. CPX: 20 mg/L, within 94.8 min | [ |
Hydrothermal/Coprecipitation | WO3/CeO2 | hollow microspheres | ![]() 40-50 nm | WO3: 2.74 eV, CeO2: 2.81 eV WO3/CeO2: 2.68 eV, | 200W, Xe 420 nm | sulfamerazine | 0.5 mg/mL catalyst deg. 100% in 3 h | [ |
Sonication- calcination | CeO2/WO3/AC | spherical/0D | ![]() 20-50 nm | WO3: 3.30 eV, CeO2: 2.30 eV | 500 W, Xe lamp >400 nm | doxycycline (DOX) | deg. 97.23%, catalyst dose: 0.2-1.4 g/L, DOX conc.: 10-50 ppm, irradiation time: 20-140 min, pH: 2-10 | [ |
hydrothermal | CeO2/ZnO | tie/nanorods/1D-3D | ![]() 700/4 μm | ZnO: 3.1-3.4 CeO2: 2.7-3.4 eV | 300 W lamp | reactive orange 16 dye | Degr. 90% of RO16 dye in 180 min | [ |
Sol-gel | PdO/CeO2 p-n junction | Spherical/0D | ![]() 10 nm | CeO2: 2.94; PdO/CeO2: 2.53, 2.49, 2.08, & 2.05 eV | 300 W Xe lamp 420 nm | Hg2+ | deg. 100% for Hg2+ reduction in 40 min rate constant: 0.106 min−1 | [ |
Hydrothermal | CeO2-g-C3N4/TiO2 | pearl shaped/nanosheets/3D | ![]() | g-C3N4: 2.79, TiO2: 3.16, g-C3N4/TiO2: 2.56, CeO2/TiO2: 3.16, CeO2-g-C3N4/Ti O2: 2.64 eV | 254 nm UV lamp 20 W | mercury (Hg0) | photooxidation of Hg0 98.6% at 150 °C and 93.1% at 250 °C, | [ |
Hydrothermal | MoS2-CeO2/SiO2-Al2O3 | plates particles/3D | ![]() 13-36 nm | 3.1 eV | 150 W, visible light | dibenzothiophene (DBT) | dibenzothiophene (96.9%) 3 h | [ |
microwave-hydrothermal | F and Fe co-doped CeO2 | spherical/0D | ![]() | CeO2: 2.80 eV, FC-2: 2.68 eV, FC-5: 2.60 eV, FC-10: 2.43 eV | 500 W, halide 420 nm | 2,4,6-trichlorophenol | removal:99.8% & de-chlorination: 89%) rates of 2,4,6-TCP within 4 h | [ |
hydrothermal | Cd/Ni@CeO2 | nanorods 1D | ![]() | CeO2:2.92 eV, Cd@CeO2: 2.68, Ni@CeO2: 2.79, Cd/Ni@CeO2: 2.57 eV | visible light | 4,6-dimethyldibenzothiophene (4,6-dMDBT) | 100% desulfurization of 4,6-DMDBT within 50 min at 60 °C, | [ |
Coprecipitation/calcination | AgInS2@ CeO2-x S-scheme | heterogeneous structure/2D | ![]() | CeO2:2.7 eV, AgInS2: 1.7 eV | UV lamp | xylose oxidation | xylonic acid yield & CO evolution rate 60.0% & 3689.9 μmol g−1 h−1 | [ |
solvothermal | 3% Cu-CeO2/ BiOBr | hydrangea-like/flower ball/3D | ![]() | Cu-CeO2: 2.65 BiOBr: 2.82 eV | 300-W Xe | sulfathiazole | degr.92.3% within 90 min when treating 20 mg L−1 STZ solution | [ |
Ultrasonic | CuBi2O4/ CeO2-x | nanorods 2D | ![]() 30-150 nm | CuBi2O4: 1.70, CeO2-x: 2.92 eV | 300 W Xe lamp | toluene | 1800 ppm i 2 h, 87.05%CO2 yield, 89.33% total organic carbon removal rate | [ |
Ultrasonication | Cu-BTC@CuS@CeO2 p-n junction | hollow octahedrons | ![]() | Cu-BTC: 2.58, CeO2: 2.72, CuS: 2.10 eV | 300 WXe 400/1100 nm | amine oxidation | 32% and 34% hydroquinone oxidation via NIR light illumination | [ |
Calcination | g-C3N4/7Ag/ m-CeO2 | nanosheets/2D | ![]() | m-CeO2: 3.01, 7Ag/m-CeO2: 2.7 5, g-C3N4/7Ag/m-CeO2: 2.54 eV | 500 W Xe 420 nm | carbon monoxide & methane conversion | CO & CH4 photoconversion efficiency was 13.94 μmol g−1 & 7.39 μmol g−1 | [ |
Hydrothermal | BiOI@CeO2@Ti3C2 | flower microspheres /3D | ![]() 1.8-2.2 μm | BiOI: 1.67, CeO2: 2.66, BiOI@CeO2@Ti3C2: 1.57, CeO2@Ti3C2: 2.21 eV | 100 Xe lamp | E. coli and S. aureus | 99.76% & 99.89% photo-catalytic bacteriostatic efficiency against Escherichia coli and Staphylococcus aureus | [ |
Hydrothermal | g-C3N4/ Bi2MoO6/ CeO2 | nanosheets/3D | ![]() 5 nm | CeO2:2.75, Bi2MoO6:2.69, g-C3N4:2. 63 eV | 300 WXe 420 nm | chlorophenol | degradation efficiency of 99.1% for 4-CP under 80 min illumination | [ |
coprecipitation | Ag/Ag3PO4/CeO2 | spherical/0D | ![]() 300-500 nm | CeO2:2.78 Ag3PO4:2.28 eV | 300 W Xe | C6H6 & HCHO | 90.18% removal rate & 74.17% TOC efficiency within 3 h 46.72% CO2 production rate, 86.01% and 65.83% for gaseous HCHO | [ |
Pyrolysis/ calcination | YFeO3/CeO2 | porous morphology | ![]() | YFeO3/CeO2:1.74, YFeO3:1.90, CeO2: 2.86 eV | 300 W Xe 100 mW cm−2 | reactive black 5 (RB5) | degr. 75.2% under visible light | [ |
Hydrothermal | carbon cloth/TiO2/ CeO2 | nanorod/fibre/3D | ![]() | TiO2:3.25, TiO2 NRs: 3.02, CC/TiO2NRs@CeO2NPs: 2.58 eV | Xe lamp /100 mW cm−2 | unsymmetrical dimethylhydrazine | degr. 97.3% of highly toxic byproducts | [ |
Hydrothermal | Fe/CeO2 | nanorods/2D | ![]() | Fe/CeO2-r: 2.90, Fe/CeO2-c: 3.01, CeO2-r: 3.09, CeO2-c: 3.21 eV | 300 W Xe | CH3CHO or RhB, volatile organic compounds | CO2: 260.45 ppm in 12 h, CH3CHO degr.: 21.7 ppm h−1 within 12 h | [ |
Sol-gel | CeO2@ CdS-Cu8S5 | hollow spheres | ![]() 780 nm | CeO2: 2.72, CdS:2.39, Cu8S5:1.38 eV | 300-W Xe 400nm | CO2 reduction | CO2 deoxygenation to CH4: 18.25 µmol/(g·h) & high selectivity: 89.3% | [ |
Hydrothermal | Ag-CeO2- ZnO | nanoflower/3D | ![]() 60/102 nm | 1AgCZ: 3.17, 2AgCZ: 3.12, AgCZ: 2.91, AgCZ: 3.02 eV | 300 W, Xe lamp, 420nm | CO2 photoreduction | CO & CH4 evolution rates on 3AgCZ were ∼377.75 and ∼20.12 μmol/g under mimicked sunlight. | [ |
Ultrasonication | CuS@CeO2 p-n junction | hollow Cubes/3D | ![]() | CuS: 2.29, CeO2: 2.69 eV | 300W Xe | CO&CH4 production | CO:195.8 μmol/(g·h) & CH4: 19.96 μmol/(g·h) yields optim- ized; CO:87.6 μmol/(g·h) & CH4: 11.4 μmol/(g·h) production rates | [ |
Molten liquid/ calcination | Au/Co3O4- CeO2 | nanorods/nanosheets/3D | ![]() 10 nm | UV lamp | CO | highest CO oxidation activity at 150 °C | [ | |
Waterbath/ calcination | CeO2/Cr2O3 | spherical | N2 fixation; isopropanol | air purification,energy conversion | [ | |||
Hydrothermal | β-Bi2O3/ CeO2-δ p-n junction | flower-like microstructures/nanosheets/3D | ![]() 1.5-3.0 µm | CeO2: 2.88, β-Bi2O3: 2.39 eV | 300-W Xe 420 nm | nitrogen dioxide | removal rate: 38.5, 42.9, 40.1, 38.7%, of 2/4/6/8% β-Bi2O3/ CeO2-δ composites | [ |
Thermal polymerization | CeO2−x/ g-C3N4−x | island shaped 2D | ![]() | CeO2: 3.11 g-C3N4: 2.89 eV | 300 W Xe | NO removal | 73.8% NO removal efficiency | [ |
Hydrothermal | Co(OH)2/ CeO2-g-C3N4 | porous particles/10D | ![]() | g-C3N4: 2.73, Co(OH)2: 1.27, CeO2: 3.03 50CoCe-CN:2.66 eV | 300-W Xe 420nm | NO (NO2) | 53.5% NO removal rate | [ |
hydrothermal | CQDs/CeO2 | cubic block /0D | ![]() 11 nm | CeO2: 2.65, CQDs/CeO2: 2.649, CQDs/CeO2: 2.68, &3-CQDs/CeO2: 2.59 eV | 500 W Xenon lamp | nitrogen fixation | photocatalytic nitrogen fixation: 826 μmol/(g·h) | [ |
Hydrothermal | Y- CeO2/g-C3N4(YCC) | octahedral/nanosheets/3D | ![]() 100 nm | CeO2/PCN: 2.72, YCC: 2.66 eV | 250 W Xe, 420 nm | H2 generation, RhB, Cr6+ | YCC: degr. RhB:97.12% in 360 min, H2 production rate: 48.5 μmol/h | [ |
Hydrothermal | ZnIn2S4/rGO/CeO2 Z-scheme | spherical/nanosheets/rod-shaped /2D | ![]() 5 µm | CeO2: 2.75, ZnIn2 S4: 2.44; CeO2-rG O: 2.69, ZnIn2S4-rGO: 2.36, CeO2-ZnIn2S4: 2.08, ZnIn2S4-rGO-CeO2: 1.98 eV | 150 W Xe lamp | H2 generation &TCH | H2 production: 2855 μmol/(g·h) TC degr.: 94.5% | [ |
Hydrothermal | D-CeO2/Cd ZnS/ZnO | spherical nanosheets/3D | ![]() | CeO2: 2.90 eV | 300 W Xe; 420 nm | H2 generation | 22.11 mmol/(g·h) | [ |
Ultrasonication | CeO2/CdS | hollow 1D | ![]() | CeO2: 2.9 CdS: 2.48 eV, | 300 W Xe | H2 production | H2 production efficiency: ∼12.6 mmol/(g·h) and maintains a high value over 25 h | [ |
Ultrasonic chemical | CeO2@MoS2/g-C3N4 | nanosheets 0D/2D | ![]() 19.7 nm | MoS2: 1.81, g-C3N4: 2.69, CeO2: 3.06 eV | 420 nm visible | H2 evolution | 65.4 μmol/h production activity | [ |
Thermal polymerization/Solvothermal | Co-CeO2/ g-C3N4 | irregular nanosheets/3D | ![]() 8 nm | DCN: 2.46 Co-CeO2: 1.50 eV | 300W Xe 400 nm | H2 production | 1077.02 μmol/(g·h), H2 evolution rate | [ |
Hydrothermal | Co3O4/CeO2 p-n junction | nanorods/2D | ![]() | Co3O4: 1.76 CeO2: 2.55 eV | 300 W Xe | H2 production | 2298.52 μmol/(g·h), H2 generation efficiency | [ |
Hydrolysis | N-doped CeO2-δ@ZnIn2S4 | nanosheets/2D | ![]() | CeO2: ∼3.56, N-CeO2-δ: ∼3.12 & Zn In2S4: ∼2.54 eV | 300 W Xe lamp | H2 evolution/water splitting | ∼798 μmol/(g·h), H2 generation efficiency | [ |
Hydrothermal | CuInS2/CeO2 | nanowires/2D | ![]() | CuInS2: 1.34 eV CeO2: 3.28 eV | 300 W Xe lamp | H2 production | 226.6 μmol/(g·h), H2 generation efficiency | [ |
Hydrothermal | C/N-CeO2/ MgIn2S4 | nanorod/ nanoflower /1D/2D | ![]() | C/N-CeO2: 2.3 eV MgIn2S4: 0.91 eV | UV-visible light | H2O2 and H2 production | 2520.4 μmol/(g·h) and 419.2 μmol/h H2O2 and H2 evolution efficiency | [ |
Coprecipitation | ZnO- CeO2-Ag | nanosheets- rods/2D-1D | ![]() 22.4-33.5 nm | ZnO: 2.92 eV CeO2: 2.58 eV | 300 W Xe | H2 evolution | 31420 μmol/(g·h), H2 generation efficiency | [ |
Hydrothermal/ultrasonication | α-Fe2O3/ CeO2 | nanorods | ![]() CeO2:400/20 nm, Fe2O3: 10 nm | Fe2O3/CeO2: 2.96, 2.52, 2.49, 2.05 & 1.99 eV | visible light | H2 production | 2973.2 µmol/(g·h), H2 generation efficiency | [ |
Hydrothermal | CeO2/ZnO | sheets/ petals/2D | ![]() 71 nm | ZnO: 3.07 eV CeO2: 2.97 eV | 300 W, λ = 380, 780 nm | H2 production | photodeg. 97.4% after 150 min, H2 production 63.59 mmol/g. H2 production 27.104 mmol/g in 3 h, | [ |
Fig. 18. Potential levels and charge migration mechanism via p-n type heterojunction of the CeO2@GO-COOH nanocomposite for pollutant degradation. Photodegradation profile of ciprofloxacin (CIP) (a) and sulfanilamide (SUL) (b) [36].
Fig. 19. The CO (a), CH4 yield (b) and selectivity (c) of different photocatalysts. CO (d) and CH4 (e) yield of CN-BIO/CeO2 with different contents of BIO. (f) Photocatalytic stability of CN-BIO/CeO2 [313].
Fig. 20. (a) Mechanism of photocatalytic nitrogen fixation by CQDs/CeO2. (b) PL spectra of CeO2 and 2-CQDs/CeO2. (c) NH4+ yield in the dark with N2 input and under visible light irradiation but different atmospheres for 2-CQDs/CeO2 and CeO2. (d) NH4+ yield over different samples under visible light irradiation and N2 atmosphere. (e) Recycling stability test of NH4+ yield for 2-CQDs/CeO2. (f) Comparison with reported photocatalytic nitrogen fixation efficiencies [45].
Fig. 21. (a) Schematic diagram of Au@CeO2 composite. (b) SEM image of the Au@CeO2-18 CSNPs. (c) Light-driven photocatalytic H2 evolution reaction activity for pure CeO2 and Au@CeO2 CSNPs time-dependent amount of H2 evolution. (d) Hourly H2 evolution reaction rate. (e) Wavelength-dependent AQY efficiency at different incident wavelengths. (f) Repetitive HER test over five sequential cycles (20 h in total). (g) Corresponding change in the H2 evolution reaction activity after repetitive testing cycles [314].
Fig. 22. (a) Schematic diagram of proposed photocatalytic mechanisms of Ag NPs@CeO2 and Ag NWs@CeO2 HHJs (i,ii) oxygen evolution; (iii,iv) MB oxidation. (b) UV/Vis spectra of Ag NPs@CeO2, Ag NWs@CeO2-2 core-shell and pure CeO2 sample. (c) Photocatalytic O2 evolution curves of pure CeO2, Ag NPs@CeO2 and Ag NWs@CeO2 HHJs from 50 mmol/L AgNO3 aqueous solution under >400 nm light illumination. (d) The degradation curves of MB over pure CeO2, Ag NPs@CeO2 sample, and Ag NWs@CeO2-2 sample [315].
Fig. 23. (a) Optical UV/Vis curves using Nessler's reagent analysis to determine NH4+ and (inset) display diagram of reaction solution after nitrogen fixation of CC-500. Curves for the amounts of NH4+ evolved (b) and NH4+ evolution (c) rates of CeO2, CC-500, CC-600, CC-700, and Cr2O3 under UV-vis light irradiation at 50 °C. (d) Curves for the amounts of NH4+ evolved for CC-500 under different light irradiation and temperature conditions, are below the schematic diagram of CeO2/Cr2O3 HHJs [286].
Fig. 24. (a) Temporal courses of the decrease in MO concentration with visible-light irradiation time. (b) Degradation kinetic profiles of MO. (c) Representative degradation pro?le of MO in the presence of CBO-4. (d) Cycling tests of CBO-4 for MO degradation [268].
Fig. 25. Interaction effect of catalyst dosage and DOX initial concentration (irradiation time: 80 min and pH: 6) (a), catalyst dosage and irradiation time (DOX initial concentration: 30 ppm and pH: 6) (b), catalyst dosage and pH (DOX initial concentration: 30 ppm and irradiation time: 80 min) (c), DOX initial concentration and irradiation time (catalyst dosage: 0.8 g/L and pH: 6) (d), DOX initial concentration and pH (catalyst dosage: 0.8 g/L and irradiation time: 80 min) (e), and irradiation time and pH (catalyst dosage: 0.8 g/L and DOX initial concentration: 30 ppm) (f) on DOX degradation [231].
Fig. 26. (a) H2 generation rate of CeO2, CIS, and various CIS/CeO2 with different mass ratios of CeO2 to CIS/CeO2, respectively. (b) H2 evolution rate of CIS/CeO2-50 in different sacrificial reagent systems. (c) Photocatalytic stability tests of CIS/CeO2-50 for running four cycles. (d) UV-vis diffuse reflectance spectra. (e) PL spectra at λEx = 380 nm. (f) I-t curves, the white background means the light is on, and the light gray one means the light is off. (g) Electron lifetime determined from I-t curves. It represents the photocurrent density from the moment that light is turned off until time t. t1, t2, and t3 represent the time when CeO2, CIS, and CIS/CeO2-50 reach It, respectively. (h) Electrochemical impedance spectra. (i) H2 generation rate with and without heterojunction [5].
Fig. 27. Photocatalytic degradation of TCH under different catalysts (a) and different dosages (b) of ZnInS2-rGO-CeO2. (c) different pH of ZnInS2-rGO-CeO2, (d) Pseudo-first-order kinetic plots of ln(C0/C) vs. time for different catalysts, (e) Pseudo-first-order kinetic plots of ln(C0/C) vs. time for different dosage. (f) Pseudo-first-order kinetic plots of ln(C0/C) vs. time for different pH [47].
Fig. 28. (a) Comparative UV/visible spectra of CeO2, and Ni, Fe doped CeO2 NPs. (b) Influence of catalyst dose on the degradation of organic dye for CeO2, Ce0.42Fe0.04Co0.04O50, Ce0.42Co0.04Ni0.04O50 and Ce0.38Fe0.04Co0.04Ni0.04O50 NPs. (c) Time-dependent degradation ratios (Ct/C0) CeO2, Ce0.42Fe0.04Co0.04O50, Ce0.42Co0.04Ni0.04O50 and Ce0.38Fe0.04Co0.04Ni0.04O50 NPs. (d) Pseudo-first-order kinetic replica for pure CeO2, Ce0.42Fe0.04Co0.04O50, Ce0.42Co0.04Ni0.04O50 and Ce0.38Fe0.04Co0.04Ni0.04O50 NPs [316].
Fig. 29. (a) Schematic diagram of photocatalytic CO2 reduction mechanism. (b) Electrochemical impedance spectra. (c) Photoluminescence spectra. Photocatalytic reduction of CO2 performance (d) in cycle performance (e) of 10%CeO2@PANACSs [133].
Fig. 30. The amount (a) and rate (b) of Photocatalytic H2 evolution production of different photocatalysts. (c) Cyclic stability of photocatalytic H2 evolution of YCZIS-2. Transient photocurrent spectra (d), PL spectra (e), and electrochemical impedance spectra (f) of Y-doped CeO2, ZnIn2S4 and YCZIS-2 [317].
|
[1] | Jindou Hu, Miaomiao Zhu, Zahid Ali Ghazi, Yali Cao. Restoration mechanism of photocatalytic H2O2/H2 production stability of ZnO/ZnS S-scheme heterojunction [J]. Chinese Journal of Catalysis, 2025, 71(4): 319-329. |
[2] | Mingyang Xu, Zhenzhen Li, Rongchen Shen, Xin Zhang, Zhihong Zhang, Peng Zhang, Xin Li. Constructing S-scheme heterojunction between porphyrinyl covalent organic frameworks and Nb2C MXene for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 70(3): 431-443. |
[3] | Yong-Hui Wu, Yu-Qing Yan, Yi-Xiang Deng, Wei-Ya Huang, Kai Yang, Kang-Qiang Lu. Rational construction of S-scheme CdS quantum dots/In2O3 hollow nanotubes heterojunction for enhanced photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2025, 70(3): 333-340. |
[4] | Farideh Kolahdouzan, Nahal Goodarzi, Mahboobeh Setayeshmehr, Dorsa Sadat Mousavi, Alireza Z. Moshfegh. 1D-based nanostructures in photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 70(3): 230-259. |
[5] | Ziguo Cai, Xuefeng Yu, Penglong Wang, Huifang Wu, Ruifeng Chong, Limin Ren, Tao Hu, Xiang Wang. Role of Y2O3 in Cu/ZnO/Y2O3 catalysts for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2025, 70(3): 410-419. |
[6] | Huimei Duan, Xiaofei Li, Chuanhui Wang, Congyun Zhang, Kaiwen Yu, Lei Chen, Yunshang Zhang, Jiabin Ji, Xianfeng Yang, Dongjiang Yang. TiO2-facet-dependent effect on methane combustion over Ir/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2025, 70(3): 378-387. |
[7] | Wenjun Qiang, Duohua Liao, Maolin Wang, Lingzhen Zeng, Weiqi Li, Xuedong Ma, Liang Yang, Shuang Li, Ding Ma. Synergistic sites over the ZnxZrO catalyst for targeted cleavage of the C-H bonds of ethane in tandem with CO2 activation [J]. Chinese Journal of Catalysis, 2025, 70(3): 272-284. |
[8] | Dongxiao Wen, Nan Wang, Jiahe Peng, Tetsuro Majima, Jizhou Jiang. Collaborative photocatalytic C-C coupling with Cu and P dual sites to produce C2H4 over CuxP/g-C3N4 heterojunction [J]. Chinese Journal of Catalysis, 2025, 69(2): 58-74. |
[9] | Bingquan Xia, Gaoxiong Liu, Kun Fan, Rundong Chen, Xin Liu, Laiquan Li. Boosting hydrogen peroxide photosynthesis via a 1D/2D S-scheme heterojunction constructed by a covalent triazine framework with dual O2 reduction centers [J]. Chinese Journal of Catalysis, 2025, 69(2): 315-326. |
[10] | Yang Zhang, Nengneng Xu, Bingbing Gong, Xiaoxiao Ye, Yi Yang, Zhaodi Wang, Biyan Zhuang, Min Wang, Woochul Yang, Guicheng Liu, Joong Kee Lee, Jinli Qiao. A visible-light-driven CoS2/CuS@CNT-C3N4 photocatalyst for high-performance rechargeable zinc-air batteries beyond 500 mW cm‒2 [J]. Chinese Journal of Catalysis, 2025, 68(1): 300-310. |
[11] | Shijie Li, Changjun You, Fang Yang, Guijie Liang, Chunqiang Zhuang, Xin Li. Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants [J]. Chinese Journal of Catalysis, 2025, 68(1): 259-271. |
[12] | Baofei Hao, Younes Ahmadi, Jan Szulejko, Tianhao Zhang, Zhansheng Lu, Ki-Hyun Kim. The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms [J]. Chinese Journal of Catalysis, 2025, 68(1): 282-299. |
[13] | Lingxuan Hu, Yan Zhang, Qian Lin, Fengying Cao, Weihao Mo, Shuxian Zhong, Hongjun Lin, Liyan Xie, Leihong Zhao, Song Bai. Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO2 reduction and H2O oxidation in 2D S-scheme photosynthetic systems [J]. Chinese Journal of Catalysis, 2025, 68(1): 311-325. |
[14] | Fangxuan Liu, Bin Sun, Ziyan Liu, Yingqin Wei, Tingting Gao, Guowei Zhou. Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 64(9): 152-165. |
[15] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||