Chinese Journal of Catalysis ›› 2025, Vol. 73: 62-78.DOI: 10.1016/S1872-2067(25)64689-4
• Review • Previous Articles Next Articles
Jian-Feng Wua,b,1(), Li-Ye Lianga,b,1, Zheng Cheb,1, Yu-Ting Miaob, Lingjun Choua(
)
Received:
2024-12-28
Accepted:
2025-03-07
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: wjf@licp.cas.cn (J.-F. Wu),ljchou@licp.cas.cn (L. Chou).
About author:
Jian-Feng Wu, PhD, is an Associate Research Fellow at the State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. He obtained his B.A. degree in 2008 and Ph.D. degree in 2014 from Lanzhou University, China. Following this, he conducted postdoctoral research at the Center for Environmentally Beneficial Catalysis at the University of Kansas, USA, from 2014 to 2017. Wu has held positions at the School of Chemistry and Chemical Engineering, Lanzhou University (2017-2023), and currently at the State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (since 2023). He was recognized as a beneficiary of the key talent program in Gansu Province in 2024 and the talent introduction program of the Chinese Academy of Sciences in 2025. His research primarily focuses on low carbon catalysis, encompassing CO2 hydrogenation to methanol and methane conversion to CH3OH, CH3COOH, and HCOOH.Supported by:
Jian-Feng Wu, Li-Ye Liang, Zheng Che, Yu-Ting Miao, Lingjun Chou. Bimetallic oxide catalysts for CO2 hydrogenation to methanol: Recent advances and challenges[J]. Chinese Journal of Catalysis, 2025, 73: 62-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64689-4
Catalyst | Preparation method | nH2/nCO2 | T (K) | P (MPa) | GHSV a mL gcat‒1 h‒1 | CO2 Conv. (%) | Methanol Sel. (%) | STY b gMeOH kgcat‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
ZnO-ZrO2 | co-precipitation | 3/1 | 593 | 5 | 24000 | 10 | 86 | 737 | [ |
3/1 | 573 | 2 | 24000 | 3.4 | 87 | 250 | [ | ||
ZnO-ZrO2 | EISAc | 3/1 | 593 | 2 | 24000 | 6.4 | 78.5 | 413 | [ |
ZnO/t-ZrO2 | microreaction | 3/1 | 593 | 3 | 12000 | 9.2 | 93.1 | 350 | [ |
ZnOx/ZrO2-600 | impregnation | 3/1 | 573 | 2 | 9000 | 5.5 | 75.1 | 106 | [ |
ZnZrOx | flame spray pyrolysis | 4/1 | 593 | 5 | 24000 | 8.7 | 78.3 | 460 | [ |
ZnZrOx | reflux ammonia | 6/1 | 563 | 5 | 24000 | 8.4 | 95.6 | 377 | [ |
Pd/CNT+ZnZrOx | mechanical mixed | 4/1 | 593 | 5 | 24000 | 18.1 | 66.3 | 900 | [ |
CdZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 5.5 | 80 | — | [ |
GaZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 2.4 | 75 | — | [ |
GaZrOx | EISAc | 3/1 | 603 | 4 | 24000 | 10.8 | 72.9e | 760f | [ |
ZnO-ZrO2 (UiO-66) | thermal pyrolysis | 3/1 | 593 | 3 | 18000 | 5.7 | 70 | — | [ |
ZnO-ZrO2 (MOF-808) | postsynthetic treatment | 3/1 | 523 | 4 | 9000d | 2.1 | >99 | 30.4 | [ |
h-In2O3(104) | hydrothermal | 6/1 | 573 | 5 | 9000 | 17.6 | 92.4 | 288 | [ |
In2O3/ZrO2 | impregnation | 4/1 | 573 | 5 | 16000d | 5.2 | 99.8 | 295 | [ |
In2O3/ZrO2 | hydrothermal | 3/1 | 573 | 3 | 12000d | 8.83 | 77.3 | 269 | [ |
20MnOx-Co3O4 | sol-gel | 3/1 | 523 | 1 | 88800d | — | 30 | — | [ |
Ga-ZnZrOx | co-precipitation | 3/1 | 593 | 5 | 24000 | 8.8 | 87.5 | 630 | [ |
Table 1 Catalytic performance of selected bimetallic oxide catalysts.
Catalyst | Preparation method | nH2/nCO2 | T (K) | P (MPa) | GHSV a mL gcat‒1 h‒1 | CO2 Conv. (%) | Methanol Sel. (%) | STY b gMeOH kgcat‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
ZnO-ZrO2 | co-precipitation | 3/1 | 593 | 5 | 24000 | 10 | 86 | 737 | [ |
3/1 | 573 | 2 | 24000 | 3.4 | 87 | 250 | [ | ||
ZnO-ZrO2 | EISAc | 3/1 | 593 | 2 | 24000 | 6.4 | 78.5 | 413 | [ |
ZnO/t-ZrO2 | microreaction | 3/1 | 593 | 3 | 12000 | 9.2 | 93.1 | 350 | [ |
ZnOx/ZrO2-600 | impregnation | 3/1 | 573 | 2 | 9000 | 5.5 | 75.1 | 106 | [ |
ZnZrOx | flame spray pyrolysis | 4/1 | 593 | 5 | 24000 | 8.7 | 78.3 | 460 | [ |
ZnZrOx | reflux ammonia | 6/1 | 563 | 5 | 24000 | 8.4 | 95.6 | 377 | [ |
Pd/CNT+ZnZrOx | mechanical mixed | 4/1 | 593 | 5 | 24000 | 18.1 | 66.3 | 900 | [ |
CdZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 5.5 | 80 | — | [ |
GaZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 2.4 | 75 | — | [ |
GaZrOx | EISAc | 3/1 | 603 | 4 | 24000 | 10.8 | 72.9e | 760f | [ |
ZnO-ZrO2 (UiO-66) | thermal pyrolysis | 3/1 | 593 | 3 | 18000 | 5.7 | 70 | — | [ |
ZnO-ZrO2 (MOF-808) | postsynthetic treatment | 3/1 | 523 | 4 | 9000d | 2.1 | >99 | 30.4 | [ |
h-In2O3(104) | hydrothermal | 6/1 | 573 | 5 | 9000 | 17.6 | 92.4 | 288 | [ |
In2O3/ZrO2 | impregnation | 4/1 | 573 | 5 | 16000d | 5.2 | 99.8 | 295 | [ |
In2O3/ZrO2 | hydrothermal | 3/1 | 573 | 3 | 12000d | 8.83 | 77.3 | 269 | [ |
20MnOx-Co3O4 | sol-gel | 3/1 | 523 | 1 | 88800d | — | 30 | — | [ |
Ga-ZnZrOx | co-precipitation | 3/1 | 593 | 5 | 24000 | 8.8 | 87.5 | 630 | [ |
Fig. 2. The catalytic performance of MnOx/m-Co3O4, MnOx/m-SiO2, and m-Co3O4 catalysts. (a) Turnover frequency of these catalysts. (b) Yield of these catalysts towards ethylene, methanol, and DME [52].
Fig. 4. The structural characterization of the ZnO-ZrO2 catalyst. (A) HRTEM image; (B) phase-corrected STEM-HAADF image and elemental distribution; (C) ZnO-ZrO2 solid-solution structure [36].
Catalyst type | Price range ($ kg−1) |
---|---|
Cu/ZnO/Al2O3 | ~80 to ~200 |
ZnO-ZrO2 | ~130 to ~275 |
GaZrOx | ~230 to ~400 |
In2O3/ZrO2 | ~300 to ~600 |
Table 2 Estimated prices of several CO2 hydrogenation catalysts a.
Catalyst type | Price range ($ kg−1) |
---|---|
Cu/ZnO/Al2O3 | ~80 to ~200 |
ZnO-ZrO2 | ~130 to ~275 |
GaZrOx | ~230 to ~400 |
In2O3/ZrO2 | ~300 to ~600 |
|
[1] | Jie Tuo, Zhenteng Sheng, Xianchen Gong, Qi Yang, Peng Wu, Hao Xu. Shape-selective synthesis of para-xylene through tandem CO2 hydrogenation and toluene methylation over ZnCeZrOx/MCM-22 catalyst [J]. Chinese Journal of Catalysis, 2025, 73(6): 174-185. |
[2] | Xiaochun Hu, Longgang Tao, Kun Lei, Zhiqiang Sun, Mingwu Tan. Unraveling TiO2 phase effects on Pt single-atom catalysts for efficient CO2 conversion [J]. Chinese Journal of Catalysis, 2025, 73(6): 186-195. |
[3] | Peipei Xiao, Yong Wang, Xiaomin Tang, Anmin Zheng, Trees De Baerdemaeker, Andrei-Nicolae Parvulescu, Dirk De Vos, Xiangju Meng, Feng-Shou Xiao, Hermann Gies, Toshiyuki Yokoi. Isomers of organic structure directing agent influence the Al distribution of AEI zeolite and catalytic performance in methane oxidation [J]. Chinese Journal of Catalysis, 2025, 73(6): 252-260. |
[4] | Dezhi Shi, Yanyan Chen, Xiao Chen, Sen Wang, Qiang Wang, Pengfei Wang, Huaqing Zhu, Mei Dong, Jun Xu, Feng Deng, Jianguo Wang, Weibin Fan. Single [Ga(OH)]2+ species supported on mesoporous hollow-structured H-ZSM-5: A highly efficient light alkanes aromatization catalyst [J]. Chinese Journal of Catalysis, 2025, 72(5): 359-375. |
[5] | Jun Ma, Bing Xu, Shuo Cao, Shiyan Li, Wei Chu, Siglinda Perathoner, Gabriele Centi, Yuefeng Liu. Structural dynamics of Ni/Mo2CTx MXene catalysts under reaction modulate CO2 reduction performance [J]. Chinese Journal of Catalysis, 2025, 72(5): 243-253. |
[6] | Yujie Zhan, Chengqin Zhong, Mingli Bi, Yafei Liang, Yuji Qi, Jiaqi Chen, Jiaxu Liu, Xindang Zhang, Shuai Zhang, Yehong Wang, Feng Wang. Unveiling the catalytic active sites of iron-vanadium catalysts for the selective oxidation of methanol to formaldehyde [J]. Chinese Journal of Catalysis, 2025, 72(5): 334-343. |
[7] | Zhangqian Wei, Mingxiu Wang, Xinnan Lu, Zixuan Zhou, Ziqi Tang, Chunran Chang, Yong Yang, Shenggang Li, Peng Gao. An experimental and computational investigation on structural evolution of the In2O3 catalyst during the induction period of CO2 hydrogenation [J]. Chinese Journal of Catalysis, 2025, 72(5): 301-313. |
[8] | Xianquan Li, Jifeng Pang, Yujia Zhao, Lin Li, Wenguang Yu, Feifei Xu, Yang Su, Xiaofeng Yang, Wenhao Luo, Mingyuan Zheng. Identifying a bi-molecular synergetic adsorption mechanism for catalytic transformation of ethanol/acetaldehyde into 1,3-butadiene [J]. Chinese Journal of Catalysis, 2025, 71(4): 297-307. |
[9] | Hao Liang, Shunan Zhang, Ruonan Zhang, Haozhi Zhou, Lin Xia, Yuhan Sun, Hui Wang. Strong interaction between Fe and Ti compositions for effective CO2 hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 71(4): 146-157. |
[10] | Yanan Zhang, Wenna Zhang, Chengwei Zhang, Linhai He, Shanfan Lin, Shutao Xu, Yingxu Wei, Zhongmin Liu. The role of C1 species in the methanol-to-hydrocarbons reaction: Beyond merely being reactants [J]. Chinese Journal of Catalysis, 2025, 71(4): 169-178. |
[11] | Ziguo Cai, Xuefeng Yu, Penglong Wang, Huifang Wu, Ruifeng Chong, Limin Ren, Tao Hu, Xiang Wang. Role of Y2O3 in Cu/ZnO/Y2O3 catalysts for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2025, 70(3): 410-419. |
[12] | Tao Ban, Jian-Wei Wang, Xi-Yang Yu, Hai-Kuo Tian, Xin Gao, Zheng-Qing Huang, Chun-Ran Chang. Machine learning-assisted screening of SA-FLP dual-active-site catalysts for the production of methanol from methane and water [J]. Chinese Journal of Catalysis, 2025, 70(3): 311-321. |
[13] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
[14] | Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives [J]. Chinese Journal of Catalysis, 2025, 68(1): 177-203. |
[15] | Miao Zhang, Limin Zhang, Mingrui Wang, Guanghui Zhang, Chunshan Song, Xinwen Guo. The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 68(1): 366-375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||