Chinese Journal of Catalysis ›› 2025, Vol. 72: 334-343.DOI: 10.1016/S1872-2067(24)60279-2
• Articles • Previous Articles Next Articles
Yujie Zhana,b, Chengqin Zhongc, Mingli Bib, Yafei Liangb, Yuji Qib, Jiaqi Chenb,d, Jiaxu Liuc, Xindang Zhange, Shuai Zhange, Yehong Wangb,d,*(), Feng Wangb,d
Received:
2024-12-12
Accepted:
2025-02-10
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: Supported by:
Yujie Zhan, Chengqin Zhong, Mingli Bi, Yafei Liang, Yuji Qi, Jiaqi Chen, Jiaxu Liu, Xindang Zhang, Shuai Zhang, Yehong Wang, Feng Wang. Unveiling the catalytic active sites of iron-vanadium catalysts for the selective oxidation of methanol to formaldehyde[J]. Chinese Journal of Catalysis, 2025, 72: 334-343.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60279-2
Fig. 1. V/Fe molar ratios and preparation yield (a), XRD patterns (b), Raman spectra (c), and UV-vis spectra (d) of FeV catalysts prepared at different pH values. a Obtained from XRF results.
Fig. 2. V/Fe molar ratios and preparation yield (a), XRD patterns (b), UV-vis spectra (c), Raman spectra (d), and enlarged Raman spectra (e) in the range of 980-1040 cm-1 of FeV catalysts prepared under different feed V/Fe molar ratios from 1.2 to 1.8. a Molar ratio of NH4VO3 to Fe(NO3)3·9H2O during catalyst preparation. b Obtained from XRF results.
Entry | Catalyst | Fe | V | Supposed structure |
---|---|---|---|---|
1 | FeV0.5 | Fe2O3 | FeVO4 | ![]() |
2 | FeV1.0 | — | FeVO4 | ![]() |
3 | FeV1.05 | — | FeVO4 + VOx | ![]() |
4 | FeV1.1 | — | FeVO4 + VnOx | ![]() |
5 | FeV1.4 | — | FeVO4 + V2O5 | ![]() |
Table 1 Typical catalysts composition and supposed structure.
Entry | Catalyst | Fe | V | Supposed structure |
---|---|---|---|---|
1 | FeV0.5 | Fe2O3 | FeVO4 | ![]() |
2 | FeV1.0 | — | FeVO4 | ![]() |
3 | FeV1.05 | — | FeVO4 + VOx | ![]() |
4 | FeV1.1 | — | FeVO4 + VnOx | ![]() |
5 | FeV1.4 | — | FeVO4 + V2O5 | ![]() |
Fig. 3. Catalytic performances of typical FeV catalysts: Methanol conversion and formaldehyde selectivity. Reaction conditions: catalyst (0.9 mL, 40-60 mesh), 230 °C, 0.1 MPa, CH3OH/O2/N2 as feedstock, GHSV = 9000 h-1.
Catalyst | T (°C) | Surface area a | MeOH rate b | Selectivity (%) | ||||
---|---|---|---|---|---|---|---|---|
HCHO | HCOOH | COx | CH2(OCH3)2 | Others | ||||
FeV1.05 | 220 | 17.10 | 1.06 | 90.52 | 3.38 | 1.19 | 1.28 | 3.63 |
FeV1.1 | 210 | 11.11 | 1.05 | 93.31 | 1.39 | 0.39 | 2.76 | 2.15 |
FeV1.4 | 230 | 12.86 | 1.04 | 94.61 | 1.04 | 0.49 | 1.21 | 2.24 |
Table 2 Catalytic performances of typical FeV catalysts in methanol oxidation at similar MeOH consumption rates.
Catalyst | T (°C) | Surface area a | MeOH rate b | Selectivity (%) | ||||
---|---|---|---|---|---|---|---|---|
HCHO | HCOOH | COx | CH2(OCH3)2 | Others | ||||
FeV1.05 | 220 | 17.10 | 1.06 | 90.52 | 3.38 | 1.19 | 1.28 | 3.63 |
FeV1.1 | 210 | 11.11 | 1.05 | 93.31 | 1.39 | 0.39 | 2.76 | 2.15 |
FeV1.4 | 230 | 12.86 | 1.04 | 94.61 | 1.04 | 0.49 | 1.21 | 2.24 |
Fig. 4. Catalytic performances of FeV1.1 catalyst at different reaction temperatures (a) and different GHSV (b). Reaction conditions: catalyst (0.9 mL, 40-60 mesh), 0.1 MPa, CH3OH/O2/N2 as feedstock.
Fig. 5. CH3OH-IR spectra of FeV1.1 (a), FeV1.4 (b), and FeV1.05 (c) catalysts, and normalized intensity of ν(C=O) (d). Normalization procedure: Subtract the peak value of ν(C=O) at each target temperature from the peak value at room temperature (where methanol does not dissociate to form an aldehyde group), and divide all differences by the maximum difference obtained.
Fig. 6. O2 pulse experiments on FeV1.1 (a), FeV1.4 (b), and FeV1.05 (c) catalysts at 230 °C. (d) H2-TPR profiles of three catalysts. All catalysts were pretreated with methanol before O2 pulse experiments.
|
[1] | Chao Feng, Jiaxin Shao, Hanyang Wu, Afaq Hassan, Hengpan Yang, Jiaying Yu, Qi Hu, Chuanxin He. Ultra-high overpotential induces NiS2 deep reconstruction to significantly improve HER performance [J]. Chinese Journal of Catalysis, 2025, 72(5): 230-242. |
[2] | Zhangqian Wei, Mingxiu Wang, Xinnan Lu, Zixuan Zhou, Ziqi Tang, Chunran Chang, Yong Yang, Shenggang Li, Peng Gao. An experimental and computational investigation on structural evolution of the In2O3 catalyst during the induction period of CO2 hydrogenation [J]. Chinese Journal of Catalysis, 2025, 72(5): 301-313. |
[3] | Yi Liu, Shuqing Zhou, Chenggong Niu, Tayirjan Taylor Isimjan, Yongfa Zhu, Dingsheng Wang, Xiulin Yang, Jieshan Qiu, Bin Wu. Boosting the Volmer step by synergistic coupling of dilute CuRu nanoalloy with Cu/Ru dual single atoms for efficient and CO-tolerant alkaline hydrogen oxidation [J]. Chinese Journal of Catalysis, 2025, 72(5): 266-276. |
[4] | Yanan Zhang, Wenna Zhang, Chengwei Zhang, Linhai He, Shanfan Lin, Shutao Xu, Yingxu Wei, Zhongmin Liu. The role of C1 species in the methanol-to-hydrocarbons reaction: Beyond merely being reactants [J]. Chinese Journal of Catalysis, 2025, 71(4): 169-178. |
[5] | Ziguo Cai, Xuefeng Yu, Penglong Wang, Huifang Wu, Ruifeng Chong, Limin Ren, Tao Hu, Xiang Wang. Role of Y2O3 in Cu/ZnO/Y2O3 catalysts for CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2025, 70(3): 410-419. |
[6] | Tao Ban, Jian-Wei Wang, Xi-Yang Yu, Hai-Kuo Tian, Xin Gao, Zheng-Qing Huang, Chun-Ran Chang. Machine learning-assisted screening of SA-FLP dual-active-site catalysts for the production of methanol from methane and water [J]. Chinese Journal of Catalysis, 2025, 70(3): 311-321. |
[7] | Shuang Li, Haili Lin, Xuemei Jia, Xin Jin, Qianlong Wang, Xinyue Li, Shifu Chen, Jing Cao. Bimetallic NixFe2-xP cocatalyst with tunable electronic structure for enhanced photocatalytic benzyl alcohol oxidation coupled with H2 evolution over red phosphorus [J]. Chinese Journal of Catalysis, 2025, 70(3): 363-377. |
[8] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
[9] | Zheng Wei, Guoxia Jiang, Yiwen Wang, Ganggang Li, Zhongshen Zhang, Jie Cheng, Fenglian Zhang, Zhengping Hao. Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 198-208. |
[10] | Kui Jin, Meiyun Zhang, Penghua Che, Dongru Sun, Yong Wang, Hong Ma, Qiaohong Zhang, Chen Chen, Jie Xu. Solvent-scissors overcoming inert hydrogen bonding enable efficient oxidation of aromatic hydrocarbons under atmospheric oxygen [J]. Chinese Journal of Catalysis, 2024, 61(6): 322-330. |
[11] | Yongbiao Hua, Kumar Vikrant, Ki-Hyun Kim, Philippe M. Heynderickx, Danil W. Boukhvalov. Alkali-modified copper manganite spinel for room temperature catalytic oxidation of formaldehyde in air [J]. Chinese Journal of Catalysis, 2024, 60(5): 337-350. |
[12] | Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. The effects of nitrogen-doping on photocatalytic mineralization of TiO2 nanocatalyst against formaldehyde in ambient air [J]. Chinese Journal of Catalysis, 2024, 59(4): 303-323. |
[13] | Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production [J]. Chinese Journal of Catalysis, 2024, 58(3): 146-156. |
[14] | Bing Zeng, Fengwei Huang, Yuexin Wang, Kanghui Xiong, Xianjun Lang. TEMPO radically expedites the conversion of sulfides to sulfoxides by pyrene-based metal-organic framework photocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 226-236. |
[15] | Xiangqi Zhou, Lili Li, Jun-Gang Wang, Zhanbo Li, Xiji Shao, Fupeng Cheng, Linjuan Zhang, Jian-Qiang Wang, Akhil Jain, Tao Lin, Chao Jing. Unraveling the electro-oxidation steps of methanol on a single nanoparticle by in situ nanoplasmonic scattering spectroscopy [J]. Chinese Journal of Catalysis, 2024, 57(2): 59-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||