Chinese Journal of Catalysis ›› 2025, Vol. 72: 266-276.DOI: 10.1016/S1872-2067(25)64670-5
• Articles • Previous Articles Next Articles
Yi Liua, Shuqing Zhoua, Chenggong Niua, Tayirjan Taylor Isimjanb, Yongfa Zhuc, Dingsheng Wangc, Xiulin Yanga,*(), Jieshan Qiud,*(
), Bin Wue,*(
)
Received:
2024-11-16
Accepted:
2025-02-24
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: xlyang@gxnu.edu.cn (X. Yang), qiujs@mail.buct.edu.cn (J. Qiu), bin.wu@ntu.edu.sg (B. Wu).
Supported by:
Yi Liu, Shuqing Zhou, Chenggong Niu, Tayirjan Taylor Isimjan, Yongfa Zhu, Dingsheng Wang, Xiulin Yang, Jieshan Qiu, Bin Wu. Boosting the Volmer step by synergistic coupling of dilute CuRu nanoalloy with Cu/Ru dual single atoms for efficient and CO-tolerant alkaline hydrogen oxidation[J]. Chinese Journal of Catalysis, 2025, 72: 266-276.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64670-5
Fig. 1. Key characteristics of N-(CuRu)NP+SA@NC. (a) Schematic illustrations of the preparation of N-(CuRu)NP+SA@NC. (b) XRD patterns of N-(CuRu)NP+SA@NC and N-RuNP+SA@NC. (c) SEM, (d) TEM and (e) high-resolution TEM images. (f) AC HAADF-STEM image of N-(CuRu)NP+SA@NC (The spots in the red dashed circle are attributed to Ru/Cu single atoms). (g) N2 adsorption-desorption isotherms and pore size distribution (inset). (h) HAADF-STEM and corresponding elemental mappings images of N-(CuRu)NP+SA@NC.
Fig. 2. Physicochemical characterization analysis. (a) Ru K-edge XANES spectra of N-(CuRu)NP+SA@NC, (CuRu)NP+SA@NC, Ru foil, RuCl3 and RuO2. (b) Ru K-edge FT-EXAFS spectra. (c) Cu K-edge XANES of N-(CuRu)NP+SA@NC, (CuRu)NP+SA@NC, Cu foil, Cu2O and CuO. (d) Cu K-edge FT-EXAFS spectra. (e) Ru K-edge EXAFS WT analysis. (f) Cu K-edge EXAFS WT analysis. High-resolution XPS spectra of (g) Ru 3p, (h) Cu 2p in N-(CuRu)NP+SA@NC, (CuRu)NP+SA@NC, and N-RuNP+SA@NC.
Fig. 3. Electrocatalytic HOR activity. (a) HOR polarization curves of different samples. (b) HOR polarization curves of N-(CuRu)NP+SA@NC at different rotation speeds. Inset shows corresponding Koutecky-Levich plot. (c) Tafel plots. (d) Linear fitting curves in micropolarization region. (e) Comparison of various performance parameters of comparative electrocatalysts. (f) Comparison of the obtained MA and j0 with those of recently reported alkaline HOR electrocatalysts. (g) HOR polarization curves for N-(CuRu)NP+SA@NC and comm. Pt/C before and after 1000 cycles. (h) Relative current-time chronoamperometry responses of different catalysts in pure H2-saturated 0.1 mol L?1 KOH.
Fig. 4. CV curves (a) and CO-stripping voltammetry curves (b) of N-(CuRu)NP+SA@NC, (CuRu)NP+SA@NC, N-RuNP+SA@NC and Pt/C. (c) Zeta potential of N-(CuRu)NP+SA@NC, (CuRu)NP+SA@NC, N-RuNP+SA@NC. HOR polarization curves of N-(CuRu)NP+SA@NC (d) and Pt/C (e) in 1000 ppm CO/H2-saturated 0.1 mol L-1 KOH. (f) Chronoamperometry (j-t) response at 50 mV in H2/1000 ppm CO-saturated 0.1 mol L-1 KOH.
Fig. 5. (a) Differential charge density distributions of N-(CuRu)NP+SA@NC. The blue, green and pink spheres represented Ru, N and Cu atoms, respectively. (b) Density of state (DOS) plots. (c) The pDOS diagram for the d orbitals of metals in N-(CuRu)NP+SA@NC, (CuRu)NP+SA@NC, N-RuNP+SA@NC. (d) Calculated HBE and OHBE values. (e) CO absorption energies on N-(CuRu)NP+SA@NC, (CuRu)NP+SA@NC and N-RuNP+SA@NC models. (f) Calculated energy profile for hydrogen oxidation into H2O. (g) Schematic illustration of HOR catalysis on N-(CuRu)NP+SA@NC.
|
[1] | Yujie Zhan, Chengqin Zhong, Mingli Bi, Yafei Liang, Yuji Qi, Jiaqi Chen, Jiaxu Liu, Xindang Zhang, Shuai Zhang, Yehong Wang, Feng Wang. Unveiling the catalytic active sites of iron-vanadium catalysts for the selective oxidation of methanol to formaldehyde [J]. Chinese Journal of Catalysis, 2025, 72(5): 334-343. |
[2] | Chao Feng, Jiaxin Shao, Hanyang Wu, Afaq Hassan, Hengpan Yang, Jiaying Yu, Qi Hu, Chuanxin He. Ultra-high overpotential induces NiS2 deep reconstruction to significantly improve HER performance [J]. Chinese Journal of Catalysis, 2025, 72(5): 230-242. |
[3] | Jinchi Li, Wanhai Zhou, Shuqi Yu, Chen Qing, Jian He, Liang Zeng, Yao Wang, Yungui Chen. Cu-induced interface engineering of NiCu/Ni3N heterostructures for enhanced alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2024, 67(12): 186-193. |
[4] | Wangyang Wu, Shidan Yang, Huidan Qian, Ling Zhang, Lishan Peng, Li Li, Bin Liu, Zidong Wei. Interface engineering of advanced electrocatalysts toward alkaline hydrogen evolution reactions [J]. Chinese Journal of Catalysis, 2024, 66(11): 1-19. |
[5] | Yuting Yang, Luyan Shi, Qinrui Liang, Yi Liu, Jiaxin Dong, Tayirjan Taylor Isimjan, Bao Wang, Xiulin Yang. Uleashing efficient and CO-resilient alkaline hydrogen oxidation of Pd3P through phosphorus vacancy defect engineering [J]. Chinese Journal of Catalysis, 2024, 56(1): 176-187. |
[6] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[7] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[8] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[9] | Cong Liu, Xuanhao Mei, Ce Han, Xue Gong, Ping Song, Weilin Xu. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1618-1633. |
[10] | Jinling Cheng, Dingsheng Wang. 2D materials modulating layered double hydroxides for electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1380-1398. |
[11] | Pengyu Han, Na Yao, Wei Zuo, Wei Luo. Manipulating the electronic structure of Ni electrocatalyst through d-p orbital hybridization induced by B-doping for efficient alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1527-1534. |
[12] | Peng Li, Guoqiang Zhao, Ningyan Cheng, Lixue Xia, Xiaoning Li, Yaping Chen, Mengmeng Lao, Zhenxiang Cheng, Yan Zhao, Xun Xu, Yinzhu Jiang, Hongge Pan, Shi Xue Dou, Wenping Sun. Toward enhanced alkaline hydrogen electrocatalysis with transition metal-functionalized nitrogen-doped carbon supports [J]. Chinese Journal of Catalysis, 2022, 43(5): 1351-1359. |
[13] | Wei Zhong, Jiachao Xu, Ping Wang, Bicheng Zhu, Jiajie Fan, Huogen Yu. Novel core-shell Ag@AgSex nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2 [J]. Chinese Journal of Catalysis, 2022, 43(4): 1074-1083. |
[14] | Lulu An, Shaofeng Deng, Xuyun Guo, Xupo Liu, Tonghui Zhao, Ke Chen, Ye Zhu, Yuxi Fu, Xu Zhao, Deli Wang. Enhancing hydrogen electrocatalytic oxidation on Ni3N/MoO2 in-plane heterostructures in alkaline solution [J]. Chinese Journal of Catalysis, 2022, 43(12): 3154-3160. |
[15] | Haoran Yu, Danxu Liu, Hengyi Wang, Haishuang Yu, Qingyun Yan, Jiahui Ji, Jinlong Zhang, Mingyang Xing. Singlet oxygen synergistic surface-adsorbed hydroxyl radicals for phenol degradation in CoP catalytic photo-Fenton [J]. Chinese Journal of Catalysis, 2022, 43(10): 2678-2689. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||