Chinese Journal of Catalysis ›› 2025, Vol. 75: 49-58.DOI: 10.1016/S1872-2067(25)64714-0
• Article • Previous Articles Next Articles
Zhou Zhitonga,b, Guan Weixianga, Pan Xiaolia, Zhang Shengxina,b, Su Yanga, Wang Aiqina,*(), Zhang Taoa,b,*(
)
Received:
2025-02-21
Accepted:
2025-03-28
Online:
2025-08-18
Published:
2025-07-22
Contact:
*E-mail: aqwang@dicp.ac.cn (A. Wang),
taozhang@dicp.ac.cn (T. Zhang).
Supported by:
Zhou Zhitong, Guan Weixiang, Pan Xiaoli, Zhang Shengxin, Su Yang, Wang Aiqin, Zhang Tao. Ru-Co single-atom alloy catalysts for efficient amination of alcohols: A synergistic effect[J]. Chinese Journal of Catalysis, 2025, 75: 49-58.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64714-0
Entry | Catalyst | Conv. (%) | Sel. (%) | Yield of b (%) | ||
---|---|---|---|---|---|---|
b | c | Others | ||||
1 | Ru1-Co120/ZrO2 | 73.1 | 89.0 | 11.0 | — | 65.1 |
2 | Ru1-Co60/ZrO2 | 90.9 | 79.0 | 16.1 | 4.9 | 71.8 |
3 | Ru1-Co30/ZrO2 | 92.8 | 80.0 | 15.1 | 4.9 | 74.2 |
4 | Ru1-Co10/ZrO2 | 72.8 | 83.1 | 8.6 | 8.3 | 60.5 |
5 | Ru1-Co1/ZrO2 | 55.2 | 85.3 | 6.5 | 8.2 | 47.1 |
6 | Co/ZrO2 | 20.3 | >99 | n.d. | — | 20.3 |
7 a | Ru/ZrO2 | 4.8 | >99 | n.d. | — | 4.8 |
8 b | Ru/ZrO2 | 72.0 | 68.6 | 26.0 | 5.4 | 49.4 |
9 | Co/ZrO2+ Ru/ZrO2 | 45.0 | 82.0 | 3.6 | 14.4 | 36.9 |
10 | Ru1-Co30/Al2O3 | 90.4 | 79.3 | 20.7 | — | 71.7 |
11 | Ru1-Co60/Al2O3 | 87.2 | 81.6 | 17.6 | 0.8 | 71.2 |
12 | Ru1-Co30/HAP | 94.2 | 67.8 | 32.2 | — | 63.9 |
13 | Ru1-Co30/SiO2 | 20.3 | 47.8 | n.d. | 52.2 | 9.7 |
14 | Ru1-Co30/BN | 13.0 | >99 | n.d. | — | 13.0 |
15 | Ru1-Co30/TiO2 | 14.6 | 98.5 | n.d. | 1.5 | 14.4 |
Table 1 The amination of 1-octanol over different catalysts.
Entry | Catalyst | Conv. (%) | Sel. (%) | Yield of b (%) | ||
---|---|---|---|---|---|---|
b | c | Others | ||||
1 | Ru1-Co120/ZrO2 | 73.1 | 89.0 | 11.0 | — | 65.1 |
2 | Ru1-Co60/ZrO2 | 90.9 | 79.0 | 16.1 | 4.9 | 71.8 |
3 | Ru1-Co30/ZrO2 | 92.8 | 80.0 | 15.1 | 4.9 | 74.2 |
4 | Ru1-Co10/ZrO2 | 72.8 | 83.1 | 8.6 | 8.3 | 60.5 |
5 | Ru1-Co1/ZrO2 | 55.2 | 85.3 | 6.5 | 8.2 | 47.1 |
6 | Co/ZrO2 | 20.3 | >99 | n.d. | — | 20.3 |
7 a | Ru/ZrO2 | 4.8 | >99 | n.d. | — | 4.8 |
8 b | Ru/ZrO2 | 72.0 | 68.6 | 26.0 | 5.4 | 49.4 |
9 | Co/ZrO2+ Ru/ZrO2 | 45.0 | 82.0 | 3.6 | 14.4 | 36.9 |
10 | Ru1-Co30/Al2O3 | 90.4 | 79.3 | 20.7 | — | 71.7 |
11 | Ru1-Co60/Al2O3 | 87.2 | 81.6 | 17.6 | 0.8 | 71.2 |
12 | Ru1-Co30/HAP | 94.2 | 67.8 | 32.2 | — | 63.9 |
13 | Ru1-Co30/SiO2 | 20.3 | 47.8 | n.d. | 52.2 | 9.7 |
14 | Ru1-Co30/BN | 13.0 | >99 | n.d. | — | 13.0 |
15 | Ru1-Co30/TiO2 | 14.6 | 98.5 | n.d. | 1.5 | 14.4 |
Fig. 1. (a) HAADF-STEM images of Ru1-Co30/Al2O3 catalyst. Panels (1) and (2) are the line intensity profiles of the rectangular regions in (a). The elemental mapping of Co (c) and Ru (d) in the selected area (b). (e) Line scan profiles on randomly selected Co particles.
Fig. 2. (a) The normalized XANES spectra at Ru K-edge of Ru1-Co60/Al2O3 sample, with Ru foil and RuO2 as references. (b) The Fourier transform (FT) k2-weighted χ(k)-function of the EXAFS spectra at Ru K-edge.
Fig. 6. The signals of H2 (a) and acetaldehyde (b) detected by Ethanol-TPSR and the signals of acetaldehyde (c) detected by acetaldehyde-TPD over Ru1-Co30/ZrO2, Co/ZrO2 and Ru/ZrO2 catalysts.
Substrates | Conv. (%) | Sel. (%) | Substrates | Conv. (%) | Sel. (%) | ||
---|---|---|---|---|---|---|---|
| 92.8 | 80.0 | | 85.3 | 79.5 | ||
| 80.0 | 73.8 | | 66.0 | 86.2 | ||
| 74.0 | 79.5 | | 82.1 | 89.2 | ||
| 62.0 | 92.6 | | 98.2 | 78.0 | ||
| 86.2 | 93.4 | | 85.1 | 99.9 | ||
| 97.2 | 97.9 | | 46.1 a | 52.8 |
Table 2 Amination of various alcohols over Ru1-Co30/ZrO2 catalyst.
Substrates | Conv. (%) | Sel. (%) | Substrates | Conv. (%) | Sel. (%) | ||
---|---|---|---|---|---|---|---|
| 92.8 | 80.0 | | 85.3 | 79.5 | ||
| 80.0 | 73.8 | | 66.0 | 86.2 | ||
| 74.0 | 79.5 | | 82.1 | 89.2 | ||
| 62.0 | 92.6 | | 98.2 | 78.0 | ||
| 86.2 | 93.4 | | 85.1 | 99.9 | ||
| 97.2 | 97.9 | | 46.1 a | 52.8 |
|
[1] | Bowen Sun, Siyun Mu, Bingbing Chen, Guojun Hu, Rui Gao, Chuan Shi. Hydrogen production via ammonia decomposition on molybdenum carbide catalysts: Exploring the Mo/C ratio and phase transition dynamics [J]. Chinese Journal of Catalysis, 2025, 74(7): 365-376. |
[2] | Yun Ling, Hui Su, Ru-Yu Zhou, Qingyun Feng, Xuan Zheng, Jing Tang, Yi Li, Maosheng Zhang, Qingxiang Wang, Jian-Feng Li. Neighboring effect in PtCuSnCo alloy catalysts for precisely regulating nitrate adsorption and deoxidation to achieve 100% faradaic efficiency in ammonia synthesis [J]. Chinese Journal of Catalysis, 2025, 73(6): 347-357. |
[3] | Yanqin Li, Wenlong Wang, Junqi Tian, Dan Cui, Jun Yuan, Bin Fang, Nianliang Yin, Zelong Li, Feng Yu. Highly efficient hydrogenation of NO to NH3 via a Fe2O3/TiO2 catalyst [J]. Chinese Journal of Catalysis, 2025, 71(4): 330-339. |
[4] | Xue-Feng Cheng, Qing Liu, Qi-Meng Sun, Huilong Dong, Dong-Yun Chen, Ying Zheng, Qing-Feng Xu, Jian-Mei Lu. Proximity electronic effect of adjacent Ni Site enhances compatibility of hydrogenation and deoxygenation over Cu Site to boost nitrate electroreduction to ammonia [J]. Chinese Journal of Catalysis, 2025, 70(3): 285-298. |
[5] | Donglin Zhao, Keyu Zhou, Li Zhan, Guangyin Fan, Yan Long, Shuyan Song. Modulation of the electronic structure of CoP active sites by Er-doping for nitrite reduction for ammonia electrosynthesis [J]. Chinese Journal of Catalysis, 2025, 70(3): 299-310. |
[6] | Xiang Zhang, Weihang Li, Jin Zhang, Haoshen Zhou, Miao Zhong. Efficient nitrate electroreduction to ammonia via synergistic cascade catalysis at Cu/Fe2O3 hetero-interfaces [J]. Chinese Journal of Catalysis, 2025, 68(1): 404-413. |
[7] | Qing Liu, Xue-Feng Cheng, Jin-Yan Huo, Xiao-Fang Liu, Huilong Dong, Hongbo Zeng, Qing-Feng Xu, Jian-Mei Lu. Manipulating the interactions between N-intermediates and one-dimensional conjugated coordination polymers to boost electroreduction of nitrate to ammonia [J]. Chinese Journal of Catalysis, 2024, 62(7): 231-242. |
[8] | Jieyu Liu, Haiqiang Guo, Yulin Xiong, Xing Chen, Yifu Yu, Changhong Wang. Rational design of Pt-anchored single-atom alloy electrocatalysts for NO-to-NH3 conversion by density functional theory and machine learning [J]. Chinese Journal of Catalysis, 2024, 62(7): 243-253. |
[9] | Tianhua Zhang, Haihui Hu, Jiaxin Li, Yinglong Gao, Lingling Li, Mingyuan Zhang, Xuanbei Peng, Yanliang Zhou, Jun Ni, Bingyu Lin, Jianxin Lin, Bing Zhu, Dongshuang Wu, Linjie Zhang, Lili Han, Lirong Zheng, Xiuyun Wang, Lilong Jiang. Tuning clusters-metal oxide promoters electronic interaction of Ru-based catalyst for ammonia synthesis under mild conditions [J]. Chinese Journal of Catalysis, 2024, 60(5): 209-218. |
[10] | Mu-Lin Li, Yi-Meng Xie, Jingting Song, Ji Yang, Jin-Chao Dong, Jian-Feng Li. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 60(5): 42-67. |
[11] | Yifei Nie, Hongping Yan, Suwei Lu, Hongwei Zhang, Tingting Qi, Shijing Liang, Lilong Jiang. Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction [J]. Chinese Journal of Catalysis, 2024, 59(4): 293-302. |
[12] | Lili Chen, Yanheng Hao, Jianyi Chu, Song Liu, Fenghua Bai, Wenhao Luo. Electrocatalytic nitrate reduction to ammonia: A perspective on Fe/Cu-containing catalysts [J]. Chinese Journal of Catalysis, 2024, 58(3): 25-36. |
[13] | Yingying Wei, Yuyao Sun, Yaodong Yu, Yue Shi, Zhe Wu, Lei Wang, Jianping Lai. 4 d Metal-doped liquid Ga for efficient ammonia electrosynthesis at wide N2 concentrations [J]. Chinese Journal of Catalysis, 2024, 67(12): 194-203. |
[14] | Yi Wang, Shuo Wang, Yunfan Fu, Jiaqi Sang, Yipeng Zang, Pengfei Wei, Hefei Li, Guoxiong Wang, Xinhe Bao. Synergistic catalytic conversion of nitrate into ammonia on copper phthalocyanine and FeNC two-component catalyst [J]. Chinese Journal of Catalysis, 2024, 56(1): 104-113. |
[15] | Yunrui Tian, Haotian Tan, Xia Li, Jingjing Jia, Zixian Mao, Jian Liu, Ji Liang. Metal-based electrocatalysts for ammonia electro-oxidation reaction to nitrate/nitrite: Past, present, and future [J]. Chinese Journal of Catalysis, 2024, 56(1): 25-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||