Chinese Journal of Catalysis ›› 2026, Vol. 80: 330-346.DOI: 10.1016/S1872-2067(25)64821-2
• Articles • Previous Articles Next Articles
Wonjoong Yoona,1, Malayil Gopalan Sibib,1, Jaehoon Kima,b,c,*(
)
Received:2025-06-05
Accepted:2025-08-05
Online:2026-01-18
Published:2026-01-05
Contact:
Jaehoon Kim
About author:First author contact:1These authors contributed equally.
Wonjoong Yoon, Malayil Gopalan Sibi, Jaehoon Kim. A triple-bed Na-FeAlOx/Zn-HZSM-5@SiO2 catalyst for the stable and direct generation of aromatics via CO2 hydrogenation[J]. Chinese Journal of Catalysis, 2026, 80: 330-346.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64821-2
| Catalyst | BET surface area a (m2 g−1) | Total pore volume b (cm3 g-1) | Micropore volume c (cm3 g−1) | Mesopore volume c (cm3 g−1) | Average pore diameter (nm) |
|---|---|---|---|---|---|
| HZSM-5(12.5) | 402.2 | 0.210 | 0.180 | 0.031 | 2.0 |
| Zn-HZSM-5(12.5) | 318.8 | 0.154 | 0.141 | 0.013 | 1.9 |
| Reduced ZnZS | 367.9 | 0.206 | 0.165 | 0.041 | 2.2 |
| Spent TBM (250 h) | 221.2 | 0.168 | 0.159 | 0.009 | 3.1 |
| Spent TBB (250 h) | 281.3 | 0.181 | 0.170 | 0.011 | 2.6 |
Table 1 Textural properties of the zeolite supports and composite catalysts determined from their N2 adsorption-desorption isotherms.
| Catalyst | BET surface area a (m2 g−1) | Total pore volume b (cm3 g-1) | Micropore volume c (cm3 g−1) | Mesopore volume c (cm3 g−1) | Average pore diameter (nm) |
|---|---|---|---|---|---|
| HZSM-5(12.5) | 402.2 | 0.210 | 0.180 | 0.031 | 2.0 |
| Zn-HZSM-5(12.5) | 318.8 | 0.154 | 0.141 | 0.013 | 1.9 |
| Reduced ZnZS | 367.9 | 0.206 | 0.165 | 0.041 | 2.2 |
| Spent TBM (250 h) | 221.2 | 0.168 | 0.159 | 0.009 | 3.1 |
| Spent TBB (250 h) | 281.3 | 0.181 | 0.170 | 0.011 | 2.6 |
Fig. 1. (a) Hydrogenation of CO2 and the resulting hydrocarbon selectivity. (b) Detailed liquid hydrocarbon distribution over the 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (MM, Na11-FA?ZnZS), granular-mixed (GM, Na11-FA|ZnZS), dual-bed (DB, Na11-FA||ZnZS ), and triple-bed (TB, Na11-FA|||ZnZS) configurations. (c) Schematic representation of the various catalyst configurations. Pretreatment conditions: 450 °C, 3.5 MPa, H2 flow rate = 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 25 h. Note: The visual difference between the middle and bottom ZnZS layers in the TB configuration is due to limitations in the visualization setup using a glass TPD cell. Both layers contain identical ZnZS catalyst (0.5?g each) and were uniformly loaded in the actual stainless-steel reactor.
Fig. 2. Hydrogenation of CO2, hydrocarbon selectivity, and stability over the 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS) (a,b), granular-mixed (Na11-FA|ZnZS) (c,d), dual-bed (Na11-FA||ZnZS) (e,f), and triple-bed (Na11-FA|||ZnZS) (g,h) configurations. Pretreatment conditions: 450 °C, 3.5 MPa, H2 flow rate = 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, and 4000 mL g?1 h?1. Non-Aro C5+ = non-aromatic C5+ compounds. Aro = aromatic compounds.
Fig. 3. (a) XRD patterns of the reduced and spent 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS), granular-mixed (Na11-FA|ZnZS), dual-bed (Na11-FA||ZnZS), and triple-bed (Na11-FA|||ZnZS) configurations. Layer-position abbreviations used herein: DBT/DBB denote the top/bottom layers of the dual-bed (DB) configuration, and TBT/TBM/TBB denote the top/middle/bottom layers of the triple-bed (TB) configuration. Enlarged XRD patterns in the metal oxide region (b), carbide region (c), and zeolitic region (d,e). Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 4. High-resolution XPS spectra in the C 1s region (a), Fe 2p region (b), and Na 1s region (c) for the spent 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS), granular-mixed (Na11-FA|ZnZS), dual-bed (Na11-FA||ZnZS), and triple-bed (Na11-FA|||ZnZS) configurations. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 5. NH3-TPD (a) and pyridine-DRIFT profiles (b) of the reduced 11%Na-FeAlOx (Na11-FA), Zn-HZSM-5(12.5)@SiO2 (ZnZS), and 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS) and granular-mixed (Na11-FA|ZnZS) configurations, along with those of the spent Na11-FA/ZnZS catalyst in the bottom bed of dual-bed (Na11-FA||ZnZS) configuration, and in the middle and bottom beds of the triple-bed (Na11-FA|||ZnZS) configuration. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 6. HR-TEM and HAADF images of the spent Na11-FA (250 h) (a), Na11-FA?ZnZS (150 h) (b), Na11-FA|ZnZS (150 h) (c), top bed Na11-FA||ZnZS (150 h) (d), and top bed Na11-FA|||ZnZS (250 h) (e) catalysts. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 7. HR-TEM and HAADF images of the spent bottom beds of the Na11-FA||ZnZS (150 h) (a) and Na11-FA|||ZnZS (250 h) (b) catalysts. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 8. TGA profiles of the spent 11%Na-FeAlOx (Na11-FA) (a) and 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS) (b), granular-mixed (Na11-FA|ZnZS) (c), top bed of the dual-bed (Na11-FA||ZnZS) (d), bottom bed of the Na11-FA||ZnZS (e), top bed of the triple-bed (Na11-FA|||ZnZS) (f), middle bed of the Na11-FA|||ZnZS (g), and bottom bed configurations for the Na11-FA|||ZnZS (h) catalysts. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
|
| [1] | Jie Tuo, Zhenteng Sheng, Xianchen Gong, Qi Yang, Peng Wu, Hao Xu. Shape-selective synthesis of para-xylene through tandem CO2 hydrogenation and toluene methylation over ZnCeZrOx/MCM-22 catalyst [J]. Chinese Journal of Catalysis, 2025, 73(6): 174-185. |
| [2] | Jian-Feng Wu, Li-Ye Liang, Zheng Che, Yu-Ting Miao, Lingjun Chou. Bimetallic oxide catalysts for CO2 hydrogenation to methanol: Recent advances and challenges [J]. Chinese Journal of Catalysis, 2025, 73(6): 62-78. |
| [3] | Xiaochun Hu, Longgang Tao, Kun Lei, Zhiqiang Sun, Mingwu Tan. Unraveling TiO2 phase effects on Pt single-atom catalysts for efficient CO2 conversion [J]. Chinese Journal of Catalysis, 2025, 73(6): 186-195. |
| [4] | Jun Ma, Bing Xu, Shuo Cao, Shiyan Li, Wei Chu, Siglinda Perathoner, Gabriele Centi, Yuefeng Liu. Structural dynamics of Ni/Mo2CTx MXene catalysts under reaction modulate CO2 reduction performance [J]. Chinese Journal of Catalysis, 2025, 72(5): 243-253. |
| [5] | Zhangqian Wei, Mingxiu Wang, Xinnan Lu, Zixuan Zhou, Ziqi Tang, Chunran Chang, Yong Yang, Shenggang Li, Peng Gao. An experimental and computational investigation on structural evolution of the In2O3 catalyst during the induction period of CO2 hydrogenation [J]. Chinese Journal of Catalysis, 2025, 72(5): 301-313. |
| [6] | Hao Liang, Shunan Zhang, Ruonan Zhang, Haozhi Zhou, Lin Xia, Yuhan Sun, Hui Wang. Strong interaction between Fe and Ti compositions for effective CO2 hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 71(4): 146-157. |
| [7] | Xue-Feng Cheng, Qing Liu, Qi-Meng Sun, Huilong Dong, Dong-Yun Chen, Ying Zheng, Qing-Feng Xu, Jian-Mei Lu. Proximity electronic effect of adjacent Ni Site enhances compatibility of hydrogenation and deoxygenation over Cu Site to boost nitrate electroreduction to ammonia [J]. Chinese Journal of Catalysis, 2025, 70(3): 285-298. |
| [8] | Xingjuan Li, Yuhao Guo, Qinhui Guan, Xiao Li, Lulu Zhang, Weiguang Ran, Na Li, Tingjiang Yan. High-density Au-OV synergistic sites boost tandem photocatalysis for CO2 hydrogenation to CH3OH [J]. Chinese Journal of Catalysis, 2025, 69(2): 303-314. |
| [9] | Jiaxu Liu, Jiaxin Chen, Xiaoyan Zhang, Daidi Fan, Yunpeng Bai. Enhanced cofactor recycling and accelerated reaction rate via liquid-liquid phase separation in dual-enzyme condensates [J]. Chinese Journal of Catalysis, 2025, 69(2): 135-148. |
| [10] | Nan Wang, Yimo Wu, Jingfeng Han, Yanan Zhang, Li Wang, Yang Yu, Jiaxing Zhang, Hao Xiong, Xiao Chen, Yida Zhou, Hanlixin Wang, Zhaochao Xu, Shutao Xu, Xinwen Guo, Fei Wei, Yingxu Wei, Zhongmin Liu. Channel-passing growth mechanism of coke in ZSM-5 catalyzed methanol-to-hydrocarbons conversion: From molecular structure, spatiotemporal dynamics to catalyst deactivation [J]. Chinese Journal of Catalysis, 2025, 78(11): 215-228. |
| [11] | Tristan James Sim, Yun Ha Song, Jaehee Shim, Gihoon Lee, Liangqing Li, Young Soo Ko, Jungkyu Choi. Simple removal of framework aluminum from MWW type zeolites for unprecedented optimal Mo-impregnated catalysts: Systematic elucidation of coke deposition and its impact on methane dehydroaromatization [J]. Chinese Journal of Catalysis, 2025, 77(10): 123-143. |
| [12] | Yang Chen, Diwen Zhou, Yongli Chang, Hongqiao Lin, Yunzhao Xu, Yong Zhang, Ding Yuan, Lizhi Wu, Yu Tang, Chengyi Dai, Xingang Li, Qinhong Wei, Li Tan. Synergistic interface engineering in Cu-Zn-Ce catalysts for efficient CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2025, 77(10): 171-183. |
| [13] | Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives [J]. Chinese Journal of Catalysis, 2025, 68(1): 177-203. |
| [14] | Miao Zhang, Limin Zhang, Mingrui Wang, Guanghui Zhang, Chunshan Song, Xinwen Guo. The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins [J]. Chinese Journal of Catalysis, 2025, 68(1): 366-375. |
| [15] | Chang Wang, Tingting Yan, Weili Dai. Deactivation mechanism of acetone to isobutene conversion over Y/Beta catalyst [J]. Chinese Journal of Catalysis, 2024, 64(9): 133-142. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||