Chinese Journal of Catalysis ›› 2026, Vol. 80: 7-19.DOI: 10.1016/S1872-2067(25)64838-8
• Reviews • Previous Articles Next Articles
Lin-Xing Zhanga, Chang-Long Tanb, Ming-Yu Qic, Zi-Rong Tanga,c,*(
), Yi-Jun Xua,b,*(
)
Received:2025-06-24
Accepted:2025-08-07
Online:2026-01-05
Published:2026-01-05
Contact:
Zi-Rong Tang, Yi-Jun Xu
Supported by:Lin-Xing Zhang, Chang-Long Tan, Ming-Yu Qi, Zi-Rong Tang, Yi-Jun Xu. Photocatalyzed C-N coupling reactions of small molecules[J]. Chinese Journal of Catalysis, 2026, 80: 7-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64838-8
Fig. 1. Schematic diagram of photocatalytic synthesis of organonitrogen compounds by coupling CO2/CH3OH with nitrogenous small molecules (N2, NH3, and NO3-).
Fig. 2. The main typical reaction pathways for the photosynthesis of C-N compounds from various C and N sources: coupling of CO2 and NO3- to form urea (a), coupling of CO2 and N2 to form urea (b), coupling of CO2 and NH3 to form urea (c), coupling of CH3OH and N2 to form urea (d), coupling of CO2 and NH3 to form serine (e), coupling of CH3OH and NH3 to form formamide (f), coupling CH3OH and NO3- to form glycine (g), alternative coupling of CH3OH and NH3 to form formamide (h), and alternative coupling of CO2 and N2 to form urea (i). The asterisk represents the reaction intermediate adsorbed on the catalyst surface.
| Photocatalyst | C source | N source | Urea yield | AQY a | Light source | Ref. Year |
|---|---|---|---|---|---|---|
| Ti3+-TiO2/Fe-CNTs | CO2 | N2 | 8.88 μmol g-1 h-1 b (volume = 50 mL) | — c | 300 W high-pressure Hg lamp | [ |
| Cu1-TiO2 | CO2 | N2 | 7.20 μmol g-1 h-1 | — | 365 nm monochromatic light | [ |
| Zn0.7Ni0.3Se/g-C3N4 | CO2 | N2 | 1.12 μmol g-1 h-1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| Pd-CeO2 | CO2 | N2 | 9.2 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CeO2-Vo | CO2 | N2 | 6.46 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CdS@BiOBr | CO2 | N2 | 15 μmol g−1 h−1 | 3.93% at 475 nm | 300 W Xe lamp, λ ≥ 420 nm | [ |
| NiCoP/ZnIn2S4-x | CO2 | N2 | 13.9 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1-CdS/WO3 | CO2 | N2 | 10.4 μmol g−1 h−1 | 0.15% at 385 nm | Xe lamp, 200 ≤ λ ≤ 800 nm | [ |
| Ru1-TiO2 | CO2 | N2 | 24.95 μmol g−1 h−1 | 6.3% at 420 nm | 300 W Xe lamp | [ |
| SiW6Mo6@MIL-101(Cr) d | CO2 | N2 | 19.1 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| SrTiO3-FeS-CoWO4 | CO2 | N2 | 134.1 μmol g−1 h−1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| at.-Pd@TiO2/Gr e | CO2 | N2 | 0.54 mmol gPd−1 h−1f | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Ru-Cu/CeO2 | CO2 | N2 | 16.7 μmol g−1 h−1 | — | Xe lamp | [ |
| Ru1/CeO2-VO | CO2 | N2 | 13.73 μmol g−1 h−1 | 0.012% at 365 nm | 300 W Xe lamp | [ |
| ZCS@Cu/Fe-MOF | CO2 | N2 | 15.8 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1/TiO2-x | CO2 | N2 | 15.73 μmol g−1 h−1 | 0.93% at 350 nm | 300 W Xe lamp | [ |
| Pt cluster/TiO2 | CH3OH | N2 | 105.68 μmol g−1 h−1 | — | 300 W Hg lamp, 200 ≤ λ ≤ 800 nm | [ |
| Pd/LTA-3A | CO2 | NH3 | 87.0 μmol gPd−1 h−1 | — | 300 W Xe lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NH3 | 1.51 mmol gPd−1 h−1 | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| 3D-TBBD-COF | CO2 | NH3 | 523.0 μmol g−1 h−1 | 0.32% at 420 nm | 300 W Xe lamp | [ |
| P25-4h | CO | NH3 | 904.3 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| Q-TiO2/PVPD film g | CO2 | NO3- | 1.12 μmol h−1 | — | 500 W high-pressure Hg lamp, λ ≥ 300 nm | [ |
| Q-TiO2/SiO2 film | CO2 | NO3- | 1.07 μmol h−1 | — | 500 W high pressure Hg lamp, λ ≥ 300 nm | [ |
| TiO2/Cu-PVA-PAH/PSS h | CO2 | NO3- | 0.31 mmol L−1 h−1 | — | Hamamatsu E7536 Hg-Xe lamp, λ > 340 nm | [ |
| PFD:TiO2/Cu i | CO2 | NO3- | 1.1 mmol L−1 h−1 | — | 120 W high-pressure Hg lamp, λ ≤ 300 nm | [ |
| Fe2TiO5/HZSM-5 | CO2 | NO3- | 17.36 μmol g−1 h−1 | — | 250 W high-pressure Hg lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NO3- | 1.62 mmol gPd−1 h−1 | 1.05% at 400 nm | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Cs2CuBr4/TiOx-Ar j | CO2 | NO3- | 3.66 μmol g−1 h−1 | 0.022% at 405 nm | LED light | [ |
Table 1 Summary of photocatalytic urea synthesis via coupling carbonaceous with nitrogenous small molecules.
| Photocatalyst | C source | N source | Urea yield | AQY a | Light source | Ref. Year |
|---|---|---|---|---|---|---|
| Ti3+-TiO2/Fe-CNTs | CO2 | N2 | 8.88 μmol g-1 h-1 b (volume = 50 mL) | — c | 300 W high-pressure Hg lamp | [ |
| Cu1-TiO2 | CO2 | N2 | 7.20 μmol g-1 h-1 | — | 365 nm monochromatic light | [ |
| Zn0.7Ni0.3Se/g-C3N4 | CO2 | N2 | 1.12 μmol g-1 h-1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| Pd-CeO2 | CO2 | N2 | 9.2 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CeO2-Vo | CO2 | N2 | 6.46 μmol g-1 h-1 | — | 300 W Xe lamp | [ |
| CdS@BiOBr | CO2 | N2 | 15 μmol g−1 h−1 | 3.93% at 475 nm | 300 W Xe lamp, λ ≥ 420 nm | [ |
| NiCoP/ZnIn2S4-x | CO2 | N2 | 13.9 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1-CdS/WO3 | CO2 | N2 | 10.4 μmol g−1 h−1 | 0.15% at 385 nm | Xe lamp, 200 ≤ λ ≤ 800 nm | [ |
| Ru1-TiO2 | CO2 | N2 | 24.95 μmol g−1 h−1 | 6.3% at 420 nm | 300 W Xe lamp | [ |
| SiW6Mo6@MIL-101(Cr) d | CO2 | N2 | 19.1 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| SrTiO3-FeS-CoWO4 | CO2 | N2 | 134.1 μmol g−1 h−1 | — | 300 W Xe lamp, λ ≥ 420 nm | [ |
| at.-Pd@TiO2/Gr e | CO2 | N2 | 0.54 mmol gPd−1 h−1f | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Ru-Cu/CeO2 | CO2 | N2 | 16.7 μmol g−1 h−1 | — | Xe lamp | [ |
| Ru1/CeO2-VO | CO2 | N2 | 13.73 μmol g−1 h−1 | 0.012% at 365 nm | 300 W Xe lamp | [ |
| ZCS@Cu/Fe-MOF | CO2 | N2 | 15.8 μmol g−1 h−1 | — | 300 W Xe lamp, λ > 420 nm | [ |
| Ni1/TiO2-x | CO2 | N2 | 15.73 μmol g−1 h−1 | 0.93% at 350 nm | 300 W Xe lamp | [ |
| Pt cluster/TiO2 | CH3OH | N2 | 105.68 μmol g−1 h−1 | — | 300 W Hg lamp, 200 ≤ λ ≤ 800 nm | [ |
| Pd/LTA-3A | CO2 | NH3 | 87.0 μmol gPd−1 h−1 | — | 300 W Xe lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NH3 | 1.51 mmol gPd−1 h−1 | — | 300 W Xe lamp, λ ≥ 400 nm | [ |
| 3D-TBBD-COF | CO2 | NH3 | 523.0 μmol g−1 h−1 | 0.32% at 420 nm | 300 W Xe lamp | [ |
| P25-4h | CO | NH3 | 904.3 μmol g−1 h−1 | — | 300 W Xe lamp | [ |
| Q-TiO2/PVPD film g | CO2 | NO3- | 1.12 μmol h−1 | — | 500 W high-pressure Hg lamp, λ ≥ 300 nm | [ |
| Q-TiO2/SiO2 film | CO2 | NO3- | 1.07 μmol h−1 | — | 500 W high pressure Hg lamp, λ ≥ 300 nm | [ |
| TiO2/Cu-PVA-PAH/PSS h | CO2 | NO3- | 0.31 mmol L−1 h−1 | — | Hamamatsu E7536 Hg-Xe lamp, λ > 340 nm | [ |
| PFD:TiO2/Cu i | CO2 | NO3- | 1.1 mmol L−1 h−1 | — | 120 W high-pressure Hg lamp, λ ≤ 300 nm | [ |
| Fe2TiO5/HZSM-5 | CO2 | NO3- | 17.36 μmol g−1 h−1 | — | 250 W high-pressure Hg lamp | [ |
| at.-Pd@TiO2/Gr e | CO2 | NO3- | 1.62 mmol gPd−1 h−1 | 1.05% at 400 nm | 300 W Xe lamp, λ ≥ 400 nm | [ |
| Cs2CuBr4/TiOx-Ar j | CO2 | NO3- | 3.66 μmol g−1 h−1 | 0.022% at 405 nm | LED light | [ |
Fig. 3. (a) Schematic of oxygen vacancy formation. EPR spectra (b), N2-TPD spectra (c), CO2-TPD spectra (d), urea production rates (e) of CeO2-Purchase (commercial) and CeO2 samples heat-treated at different temperatures. (f) Mass spectrum of CeO2-500. Gibbs free energy diagrams for urea production via alternating pathway (g) and distal pathway (h). Reprinted with permission [36]. Copyright 2024, Wiley VCH.
Fig. 4. (a) EPR spectra of Ni1-CdS/WO3 treated under different atmospheres. (b) Results of comparative experiments on Ni1-CdS/WO3 under different conditions, with error bars indicating the mean absolute deviation from a minimum of three independent tests. (c) In-situ FTIR spectra monitoring intermediates in photocatalytic urea synthesis over Ni1-CdS/WO3. (d) Gibbs free energy diagrams of the urea synthesis pathway over Ni1-CdS/WO3 catalyst. (e) Schematic diagram illustrating the mechanism of photocatalytic urea synthesis over the Ni1-CdS/WO3 catalyst. Reprinted with permission [25]. Copyright 2024, Wiley-VCH.
Fig. 5. (a) Schematic diagram of the synthesis of at.-Pd@TiO2/Gr catalyst. (b) DFT calculated free-energy diagrams for the coupling of NH3 and CO2 to urea catalyzed by at.-Pd@TiO2/Gr. Insets display atomic configurations corresponding to each step. Reprinted with permission [42]. Copyright 2024, Chinese Chemical Society. (c) The speculative mechanism for urea synthesis involving the coupling of CO2 and NO3?. Reprinted with permission [55]. Copyright 2012, Wiley-VCH. (d) The FTIR spectra of CCBT-Ar under different conditions. (e) Schematic illustration of the CO2 and NO3? co-reduction over the CCBT-Ar catalyst. Reprinted with permission [56]. Copyright 2024, Elsevier.
Fig. 6. (a) Schematic diagram of the N2 activation mechanism on a Pt center. (b) EPR spectra of TiO2 and Pt cluster/TiO2 under dark and light irradiation conditions. (c) Calculated C-N bond length for the coupling of *CHO group with N-containing intermediates generated during N2 reduction. (d) Proposed reaction pathway for urea synthesis via the coupling of CH3OH with N2. Reprinted with permission [47]. Copyright 2024, Wiley-VCH.
Fig. 7. (a) EPR spectra in the NH3 and CH3OH system (under an atmosphere of 20% O2, 2 min light irradiation), with simulated signals of DMPO-NH2, DMPO-CH2OH and DMPO-OOH. (b) EPR spectra in the NH3 system (under an atmosphere of 20% O2 and Ar, 2 min light irradiation), with simulated signals of DMPO-NH2 and DMPO-OH. (c) The proposed reaction pathways for formamide synthesis. Reprinted with permission [27]. Copyright 2024, Wiley-VCH. (d) Photocatalytic H2 and formamide production performance and hole selectivity over different metal-loaded CdS. (e) Schematic of photocatalytic formamide synthesis over Pt-CdS. Reprinted with permission [78]. Copyright 2025, Wiley-VCH.
Fig. 8. (a) Glycine synthesis rates within diverse anatase TiO2 systems. (b) Glycine yield rates over Ba2+-TiO2 under different reactants. (c) In-situ EPR spectra of TiO2 and Ba2+-TiO2 in a CH3OH and NO3- mixture under light or dark conditions. (d) The proposed mechanism of glycine synthesis from the photocatalytic conversion of CH3OH and NO3-. Reprinted with permission [82]. Copyright 2024, Wiley-VCH.
Fig. 9. Photocatalytic activity for amino acids (a) and other products (b) over left- and right-handed mesostructured ZnS (denoted as L-CMZ and D-CMZ), racemic and achiral mesostructured ZnS (denoted as RMZ and AMZ). Error bars signify the standard deviation derived from the measurements of the five independent tests. (c) The pathway for synthesizing (i) serine, (ii) alanine and (iii) glycine. Reprinted with permission [85]. Copyright 2025, Elsevier.
|
| [1] | Borong Lu, Chunmei Lv, Ying Xie, Kai Zhu, Ke Ye, Xiaojin Li. Construction of Ni2P/CoP interface for highly efficient electrolysis of urea-assisted hydrogen production at industrial current densities [J]. Chinese Journal of Catalysis, 2025, 69(2): 163-175. |
| [2] | Jiaxin Li, Yan Lv, Xueyan Wu, Xinyu Guo, Zhuojun Yang, Jixi Guo, Tianhua Zhou, Dianzeng Jia. Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production [J]. Chinese Journal of Catalysis, 2025, 69(2): 203-218. |
| [3] | Shuanglong Zhou, Yue Shi, Yu Dai, Tianrong Zhan, Jianping Lai, Lei Wang. Continuous-flow electrosynthesis of urea and oxalic acid by CO2-nitrate reduction and glycerol oxidation [J]. Chinese Journal of Catalysis, 2024, 63(8): 270-281. |
| [4] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
| [5] | Junbao Peng, Jin Xie, Zelong Li, Can Li. Photon-induced regeneration of Pd catalyst for carbonylation of amines to ureas [J]. Chinese Journal of Catalysis, 2024, 66(11): 146-151. |
| [6] | Zuo-Shu Sun, Xue-Yan Xiang, Qiu-Ping Zhao, Zhao Tang, Shi-Yi Jiang, Tong-Bu Lu, Zhi-Ming Zhang, Baifan Wang, Hua-Qing Yin. Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon [J]. Chinese Journal of Catalysis, 2024, 65(10): 153-162. |
| [7] | Chun Yin, Fulin Yang, Shuli Wang, Ligang Feng. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 225-236. |
| [8] | Chenxin Chen, Suqi He, Kamran Dastafkan, Zehua Zou, Qingxiang Wang, Chuan Zhao. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(5): 1267-1276. |
| [9] | Zizhan Liang, Rongchen Shen, Peng Zhang, Youji Li, Neng Li, Xin Li. All-organic covalent organic frameworks/perylene diimide urea polymer S-scheme photocatalyst for boosted H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2581-2591. |
| [10] | Xingchao Dai, Bin Wang, Aiqin Wang, Feng Shi. Amine formylation with CO2 and H2 catalyzed by heterogeneous Pd/PAL catalyst [J]. Chinese Journal of Catalysis, 2019, 40(8): 1141-1146. |
| [11] | Zhenyu Huang, Zhenggang Gao, Shanmin Gao, Qingyao Wang, Zeyan Wang, Baibiao Huang, Ying Dai. Facile synthesis of S-doped reduced TiO2-x with enhanced visible-light photocatalytic performance [J]. Chinese Journal of Catalysis, 2017, 38(5): 821-830. |
| [12] | Meiqin Shi, Wentian Zhang, Yingying Li, Youqun Chu, Chun'an Ma. Tungsten carbide-reduced graphene oxide intercalation compound as co-catalyst for methanol oxidation [J]. Chinese Journal of Catalysis, 2016, 37(11): 1851-1859. |
| [13] | Juanjuan Chen, Chang Wang, Bin Dong, Wenguang Leng, Jun Huang, Rile Ge, Yanan Gao. Ionic liquids as eco-friendly catalysts for converting glycerol and urea into high value-added glycerol carbonate [J]. Chinese Journal of Catalysis, 2015, 36(3): 336-343. |
| [14] | Majid Ghashang, Syed Sheik Mansoor, Krishnamoorthy Aswin. Thiourea dioxide: An efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4, 3-b]pyran derivatives in water [J]. Chinese Journal of Catalysis, 2014, 35(1): 127-133. |
| [15] | Sadeq Hamood Saleh AZZAM, Aisha SIDDEKHA, Aatika NIZAM, Mohamed Afzal PASHA. SiO2-NaHSO4 as an Efficient Reusable Heterogeneous Catalyst for the One-Pot Three-Component Synthesis of Octahydro-quinazolin-2,5-diones in Water [J]. Chinese Journal of Catalysis, 2012, 33(4): 677-680. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||