Chinese Journal of Catalysis ›› 2026, Vol. 81: 284-298.DOI: 10.1016/S1872-2067(25)64845-5
• Article • Previous Articles Next Articles
Zhe Zhanga,1, Guixu Pana,1, Wei Zhua,1, Keyu Zhanga, Guijie Liangb(
), Shihan Wanga, Ning Wanga(
), Yan Xingc, Yunfeng Lia(
)
Received:2025-06-23
Accepted:2025-08-06
Online:2026-02-18
Published:2025-12-26
Contact:
*E-mail: liyf377@nenu.edu.cn (Y. Li),ninaw2018@163.com (N. Wang),guijie-liang@hbuas.edu.cn (G. Liang).
About author:1 Contributed equally to this work.
Supported by:Zhe Zhang, Guixu Pan, Wei Zhu, Keyu Zhang, Guijie Liang, Shihan Wang, Ning Wang, Yan Xing, Yunfeng Li. Multi-intermolecular forces strengthen interfacial carrier mobility in poly (barbituric acid) all-organic heterojunction systems for efficient solar-to-hydrogen conversion[J]. Chinese Journal of Catalysis, 2026, 81: 284-298.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64845-5
Fig. 1. (A) Schematic diagram for formation process of PBA/UCN S-scheme heterojunctions. SEM image of PBA (B) and UCN (C) samples. (D) HAADF-STEM image of PBA/UCN1:3 heterojunction. TEM image of PBA/UCN1:3 (E) and the corresponding elemental mapping images of C (F) and N (G) elements. (H) HRTEM images of PBA/UCN1:3. (I) AFM image of PBA/UCN1:3 heterojunction. FT-IR spectra (J), in-situ temperature dependent FT-IR spectra (K), and solid-state 1H NMR spectra (L) of the as-prepared samples.
Fig. 2. UV-vis DRS (A) and corresponding Kubelka-Munk plots (B) of the as-prepared samples. (C) Mott-Schottky plots of PAB and UCN samples. Steady state PL spectra (D), TSPV tests (E), transient photocurrent responses (F), EIS tests (G), and time-resolved PL spectra (H) of PAB, UCN, and PBA/UCN1:3 samples.
Fig. 3. UPS tests of PBA (A) and UCN (B) samples. High-resolution XPS of C 1s (C) and N 1s (D) for PAB, UCN and PBA/UCN1:3 samples. High-resolution in-situ XPS of O 1s (E), C 1s (F) and N 1s (G) of PAB, UCN and PBA/UCN1:3 samples. Calculated band structure (H), density of states (I), calculated work function and differential charge density map (inset of J) (J) for PBA/UCN heterojunctions.
Fig. 4. AFM image (A), KPFM image (B), and corresponding line-scanning CPD from A to B (C) of PBA/UCN heterojunction in dark. AFM image (D), KPFM image (E), and corresponding line-scanning CPD from A to B (F) of PBA/UCN heterojunction under light illumination. (G) Illustration of in-situ light-assisted KPFM measurement (i) and formation of interface potential (ii and iii).
Fig. 5. Time-resolved diffuse reflectance spectra of PBA (A,E), UCN (C,G) and PBA/UCN1:3 (B, F, D, H) samples. Time profiles of normalized transient absorption for PBA (I), UCN (K), and PBA/UCN1:3 (J, L) samples after 320 nm laser pulse irradiation.
Fig. 6. SPV tests (A), EPR spectra of DMPO-·O2- (B) and DMPO-·OH (C) for PBA, UCN and PBA/UCN1:3 samples. In-situ EPR spectra of DMPO-·O2- (D) and DMPO-·OH (E) for PBA/UCN1:3 heterojunction under light irradiation of 0, 5, 10 min, respectively. (F) Formation process and charge carriers transfer pathway of all-organic S-scheme photocatalytic system.
Fig. 7. Photocatalytic H2 production (A) and hydrogen evolution rate (B) of the as-prepared samples. (C) Apparent quantum efficiency of PBA//UCN1:3 heterojunction. (D) Comparison with various g-C3N4-based photocatalysts reported previously (corresponding Refs. [49-75]). (E) Stability test of PBA/UCN1:3 heterojunction for H2 generation. (F) Calculated Gibbs free-energy diagram of H2 production reaction. (G) Band structure of PBA and various reducing organic photocatalytic materials. (H) Photocatalytic hydrogen evolution rate of the as-prepared various all-organic heterojunctions.
|
| [1] | Qinghua Liu, Peiqing Cai, Hengshuai Li, Xue-Yang Ji, Dafeng Zhang, Xipeng Pu. Visible-light-driven hydrogen evolution over CdS/CuWO4 S-Scheme heterojunctions: Dual synergistic enhancement via interfacial charge transfer and photothermal activation [J]. Chinese Journal of Catalysis, 2026, 81(2): 299-309. |
| [2] | Jiaping Lu, Chao Lin, Chao Li, Hongjie Shi, Nengyi Liu, Wandong Xing, Sibo Wang, Guigang Zhang, Teng-Teng Chen, Xiong Chen. Bipyridine-integrated bisoxazole-based donor-acceptor covalent organic framework for enhanced photocatalytic H2O2 synthesis [J]. Chinese Journal of Catalysis, 2026, 81(2): 185-194. |
| [3] | Yongsheng Hu, Shiji Du, Jihui Lang, Huilian Liu, Xuefei Li, Qi Zhang, Ming Lu, Xin Li, Binrong Li, Maobin Wei, Lili Yang. Rational construction of MXene-derived TiO2/CoNiO2 dual-site S-scheme heterojunction for boosting C-C coupling toward efficient photocatalytic CO2-to-C2H4 conversion [J]. Chinese Journal of Catalysis, 2026, 81(2): 227-245. |
| [4] | Ganghua Zhou, Jie Liu, Longyun Zhang, Chuanzhou Bi, Hangmin Xu, Weiyi Jiang, Xingwang Zhu, Xin Ning, Hui Xu, Xiaozhi Wang. Atomic-level Mn incorporation into Co3O4 for selective CO2 photoreduction in pure water under dilute CO2 atmosphere [J]. Chinese Journal of Catalysis, 2026, 81(2): 216-226. |
| [5] | Congcong Wang, Yongkang Quan, Suili Shi, Guorong Wang, Zhiliang Jin. Self-assembling 3D/2D ZnIn2S4/CN-NH4 to construct S-scheme heterojunctions for the efficient production of H2O2 in pure water [J]. Chinese Journal of Catalysis, 2026, 81(2): 259-271. |
| [6] | Xiong Wang, Chao Peng, Yongkang Xiao, Ziye Zhang, Huiping Zheng, Wenjie Yue, Sheng Tian, Xingsheng Hu, Weifan Shao, Guanghui Chen, Binghao Wang, Huijuan Wang, Mingming Yin, Jinxin Li, Yang Li, Lang Chen, Shuangfeng Yin. Surface engineering enhancing activity and stability of Bi2WO6-x for selective C-H bond photooxidation [J]. Chinese Journal of Catalysis, 2026, 81(2): 246-258. |
| [7] | Na Tian, Chaofan Yuan, Tong Zhou, Wenying Yu, Yinghui Wang, Na Zhang, Yihe Zhang, Hongwei Huang. Defect-coordinated Au nanoparticles in carbon nitride for efficient piezo-photocatalytic hydrogen peroxide production [J]. Chinese Journal of Catalysis, 2026, 81(2): 272-283. |
| [8] | Bolin Yang, Fei Jin, Zhiliang Jin. Efficient photocatalytic hydrogen production by a heterojunction strategy with covalent organic frameworks loaded with non-precious-metal semiconductors [J]. Chinese Journal of Catalysis, 2026, 81(2): 172-184. |
| [9] | Haopeng Jiang, Jinhe Li, Xiaohui Yu, Huilong Dong, Weikang Wang, Qinqin Liu. Interface engineering of covalent β-ketoenamine-bridged S-scheme heterojunction for synergistic solar-powered CO2-to-CO conversion paired with selective alcohol oxidation [J]. Chinese Journal of Catalysis, 2026, 80(1): 113-122. |
| [10] | Jinpeng Zhang, Teng Liang, Jaenudin Ridwan, Tian Chen, Elhussein M. Hashem, Meijun Guo, Amin Talebian-Kiakalaieh, Le Yu, Ping She, Jingrun Ran. Key components for realistic application of plastic photoreforming coupled with H2 evolution [J]. Chinese Journal of Catalysis, 2026, 80(1): 20-37. |
| [11] | Yandong Xu, Zihui Jing, Wenhao Su, Jiale Xu, Mingliang Wang. Synergistic coupling of H2O2 production and furoic acid synthesis over B-TiO2@COF S-scheme bifunctional photocatalyst [J]. Chinese Journal of Catalysis, 2026, 80(1): 135-145. |
| [12] | Shaodan Wang, Heng Yang, Lijun Xue, Jianjun Zhang, Shuxin Ouyang, Lili Wen. S-scheme heterojunctions of metal-doped ZnIn2S4/TpPa-1: Regulating H adsorption/desorption and internal electric field for boosted dual-functional photocatalysis [J]. Chinese Journal of Catalysis, 2026, 80(1): 159-173. |
| [13] | Binjie Du, Yuhang Xiao, Xiaohong Tan, Weidong He, Yingying Guo, Hao Cui, Chengxin Wang. Dual-phase Cu-Co/CoO heterojunctions for efficient tandem nitrate electroreduction via smooth intermediate handover [J]. Chinese Journal of Catalysis, 2026, 80(1): 270-281. |
| [14] | Rundong Chen, Yuhang Zhang, Bingquan Xia, Xianlong Zhou, Yanzhao Zhang, Shantang Liu. Enhanced photocatalytic production of hydrogen and benzaldehyde over a dual-function ZnxCd1-xSy/FePS3 S-scheme heterojunction [J]. Chinese Journal of Catalysis, 2026, 80(1): 123-134. |
| [15] | Xuan Zhang, Lin Zhou, Teng Yan, Xiaohu Zhang, Hao Chen. Fabrication of S-scheme heterojunction between covalent organic frameworks and Ni-ZIF-8 and its photocatalytic hydrogen production performance [J]. Chinese Journal of Catalysis, 2026, 80(1): 200-212. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||