Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (11): 1706-1714.DOI: 10.1016/S1872-2067(20)63574-4
• Articles • Previous Articles Next Articles
Xiao-Feng Zhang, Jian-Sheng Li, Wan-Sheng You, Zai-Ming Zhu
Received:
2020-02-12
Revised:
2020-03-24
Online:
2020-11-18
Published:
2020-08-15
Supported by:
Xiao-Feng Zhang, Jian-Sheng Li, Wan-Sheng You, Zai-Ming Zhu. Ag2-xO with highly exposed {111} crystal facets for efficient electrochemical oxygen evolution: Activity and mechanism[J]. Chinese Journal of Catalysis, 2020, 41(11): 1706-1714.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63574-4
[1] C. Herrero, B. Lassalle-Kaiser, W. Leibl, A. W. Rutherford, A. Aukauloo, Acc. Chem. Res., 2008, 252, 456-468. [2] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy, 2013, 38, 4901-4934. [3] X. Liu, F. Wang, Coord. Chem. Rev., 2012, 256, 1115-1136. [4] G. C. Dismukes, R. Brimblecombe, G. A. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia, G. F. Swiegers, Acc. Chem. Res., 2009, 42, 1935-1943. [5] I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem., 2017, 1, 0003. [6] L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem., 2012, 4, 418-423. [7] Z. Li, Y. Qi, W. Y. Wang, D. Li, Z. Li, Y. Xiao, G. Y. Han, J. R. Shen, C. Li, Chin. J. Catal., 2019, 40, 486-494. [8] S. Iwata, J. Barber, Curr. Opin. Struct. Biol., 2004, 14, 447-453. [9] M. W. Kanan, D. G. Nocera, Science, 2008, 321, 1072-1075. [10] L. L. Huang, Y. Q. Zou, D. W. Chen, S. Y. Wang, Chin. J. Catal., 2019, 40, 1822-1840. [11] M. D. Karkas, O. Verho, E. V. Johnston, B. Akermark, Chem. Rev., 2014, 114, 11863-12001. [12] M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun., 2004, 2192-2193. [13] D. Wang, R. N. Sampaio, L. Troian-Gautier, S. L. Marquard, B. H. Farnum, B. D. Sherman, M. V. Sheridan, C. J. Dares, G. J. Meyer, T. J. Meyer, J. Am. Chem. Soc., 2019, 141, 7926-7933. [14] Y. Xie, D. W. Shaffer, J. J. Concepcion, Inorg. Chem., 2018, 57, 10533-10542. [15] J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni, V. K. Yachandra, Science, 2006, 314, 821-825. [16] J. Yang, Y. Xiao, Q. Zhao, G. Zhang, R. Wang, G. Teng, X. Chen, M. Weng, D. He, S. Mu, Y. Lin, F. Pan, Nano Energy, 2019, 59, 443-452. [17] C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2015, 137, 4347-4357. [18] C. C. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977-16987. [19] E. Tsuji, A. Imanishi, K. I. Fukui, Y. Nakato, Electrochim. Acta, 2011, 56, 2009-2016. [20] J. D. Blakemore, N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig, R. H. Crabtree, Chem. Sci., 2011, 2, 94-98. [21] M. Yagi, E. Tomita, S. Sakita, T. Kuwabara, K. Nagai, J. Phys. Chem. B, 2005, 109, 21489-21491. [22] T. Shinagawa, M. T. K. Ng, K. Takanabe, Angew. Chem. Int. Ed., 2017, 56, 5061-5065. [23] X. L. Li, W. M. Xue, R. Mo, S. Yang, H. X. Li, J. X. Zhong, Chin. J. Catal., 2019, 40, 1576-1584. [24] X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao, G. R. Li, Adv. Mater., 2017, 29, 1604437. [25] T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931. [26] H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Nano Lett., 2015, 15, 1421-1427. [27] Y. Zhang, Y. D. Chen, Z. Z. Liang, J. Qi, X. Q. Gao, W. Zhang, R. Cao, Chin. J. Catal., 2019, 40, 1860-1866. [28] W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei, S. Jin, Adv. Funct. Mater., 2017, 27, 1603904. [29] Y. Yang, L. Dang, M. J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R. J. Hamers, S. Jin, Adv. Energy Mater., 2018, 8, 1703189. [30] G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su, K. Davey, S. Z. Qiao, Adv. Funct. Mater., 2016, 26, 3314-3323. [31] J. W. Li, Q. N. Zhuang, P. M. Xu, D. W. Zhang, L. C. Wei, D. S. Yuan, Chin. J. Catal., 2018, 39, 1403-1410. [32] B. Q. Li, S. Y. Zhang, C. Tang, X. Cui, Q. Zhang, Small, 2017, 13, 1700610. [33] M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, S. H. Yu, ACS Nano, 2014, 8, 3970-3978. [34] M. Caban-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, S. Jin, Nat. Mater., 2015, 14, 1245-1251. [35] X. Xiao, C. T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D. Yu, Energy Environ. Sci., 2017, 10, 893-899. [36] F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc., 2016, 138, 10226-10231. [37] J. M. V. Nsanzimana, Y. Peng, Y. Y. Xu, L. Thia, C. Wang, B. Y. Xia, X. Wang, Adv. Energy Mater., 2017, 1701475. [38] Y. Cui, L. Shi, Y. Yang, W. You, L. Zhang, Z. Zhu, M. Liu, L. Sun, Dalton Trans., 2014, 43, 17406-17415. [39] J. S. Li, L. Wang, W. S. You, M. Y. Liu, L. C. Zhang, X. J. Sang, Chin. J. Catal., 2018, 39, 534-541. [40] D. A. House, Chem. Rev., 1962, 62, 185. [41] M. Kimura, T. Kawajiri, M. Tanida, J. Chem. Soc., Dalton Trans., 1980, 726-730. [42] W. Wang, Q. Zhao, J. Dong, J. Li, Int. J. Hydrogen Energy, 2011, 36, 7374-7380. [43] Q. Zhao, Z. Yu, G. Hao, W. Yuan, J. Li, Int. J. Hydrogen Energy, 2014, 39, 1364-1370. [44] Q. Zhao, Z. Yu, W. Yuan, J. Li, Int. J. Hydrogen Energy, 2013, 38, 5251-5258. [45] Q. Zhao, Z. Yu, W. Yuan, J. Li, Int. J. Hydrogen Energy, 2012, 37, 13249-13255. [46] S. Wang, G. Liu, L. Wang, Chem. Rev., 2019, 119, 5192-5247. [47] X. Zhou, Z. Liu, Y. Wang, Y. Ding, Appl. Catal. B, 2018, 237, 74-84. [48] L. Liu, Z. Jiang, L. Fang, H. T Xu, H. Zhang, X. Gu, Y. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 27736-27744. [49] Y. J. Chen, Y. W. Chiang, M. H. Huang, ACS Appl. Mater. Interfaces, 2016, 8, 19672-19679. [50] X. Wang, H. F. Wu, Q. Kuang, R. B. Huang, Z. X. Xie, L. S. Zheng, Langmuir, 2010, 26, 2774-2778. [51] L. M. Lyu, W. C. Wang, M. H. Huang, Chem. Eur. J., 2010, 16, 14167-14174. [52] G. Wang, X. Ma, B. Huang, H. Cheng, Z. Wang, J. Zhan, X. Qin, X. Zhang, Y. Dai, J. Mater. Chem., 2012, 22, 21189-21194. [53] L. M. Lyu, M. H. Huang, J. Phys. Chem. C, 2011, 115, 17768-17773. [54] D. Li, C. Wei, Q. Wang, L. Liu, D. Zhong, G. Hao, Z. Zuo, Q. Zhao, J. Phys. Chem. C, 2019, 123, 10967-10973. [55] T. Shinagawa, Y. Ida, K. Mizuno, S. Watase, M. Watanabe, M. Inaba, A. Tasaka, M. Izaki, Cryst. Growth Des., 2012, 13, 52-58. [56] X. Wang, D. Liao, H. Yu, J. Yu, Dalton Trans., 2018, 47, 6370-6377. [57] L. Gui, X. Miao, C. Lei, K. Wang, W. Zhou, B. He, Q. Wang, L. Zhao, Chem. Eur. J., 2019, 25, 11007-11014. [58] D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, Adv. Energy Mater., 2017, 8, 1701905. [59] S. W. Gaarenstroom, N. Winograd, J. Chem. Phys., 1977, 67, 3500-3506. [60] G. B. Hoflund, J. F. Weaver, W. S. Epling, Surf. Sci. Spectra, 1994, 3, 163-168. [61] G. B. Hoflund, J. F. Weaver, W. S. Epling, Surf. Sci. Spectra, 1994, 3, 157-162. [62] Y. W. Choi, F. Scholten, I. Sinev, B. R. Cuenya, J. Am. Chem. Soc., 2019, 141, 5261-5266. [63] R. R. Zhang, Z. T. Sun, C. C. Zong, Z. Y. Lin, H. Huang, K. Yang, J. Chen, S. Liu, M. X. Huang, Y. Yang, W. H. Zhang, Q. W. Chen, Nano Energy, 2019, 57, 753-760. [64] B. G. Choi, H. Park, T. J. Park, M. H. Yang, J. S. Kim, S. Y. Jang, N. S. Heo, S. Y. Lee, J. Kong, W. H. Hong, ACS Nano, 2010, 4, 2910-2918. [65] H. An, Z. Chen, J. Yang, Z. Feng, X. Wang, F. Fan, C. Li, J. Catal., 2018, 367, 53-61. [66] J. Ghilane, F. R. F. Fan, A. J. Bard, Nano Lett., 2007, 7, 1406-1412. [67] C. Z. Xu, M. Q. Zheng, K. Chen, H. Hu, X. H. Chen, J. Fuel. Chem. Technol., 2016, 44, 943-953. [68] Z. Jiang, S. Huang, B. Qian, Electrochim. Acta, 1994, 39, 2465-2470. [69] D. I. Kondarides, G. N. Papatheodorou, C. G. Vayenas, X. E. Verykios, Ber. Bunsen-Ges. Phys. Chem., 1993, 97, 709-719. |
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
[3] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[4] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[5] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
[6] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[7] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[8] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[9] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[10] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[11] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[12] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[13] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[14] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
[15] | Cheng-Feng Du, Erhai Hu, Hong Yu, Qingyu Yan. Strategies for local electronic structure engineering of two-dimensional electrocatalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||