Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (7): 1805-1811.DOI: 10.1016/S1872-2067(22)64101-9
• Communications • Previous Articles Next Articles
Yanfei Zhanga,b, Hong Wanga,b, Yan Liua, Can Lia,*()
Received:
2022-03-31
Accepted:
2022-04-11
Online:
2022-07-18
Published:
2022-05-20
Contact:
Can Li
Supported by:
Yanfei Zhang, Hong Wang, Yan Liu, Can Li. Aromatic bromination with hydrogen production on organic-inorganic hybrid perovskite-based photocatalysts under visible light irradiation[J]. Chinese Journal of Catalysis, 2022, 43(7): 1805-1811.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64101-9
Fig. 2. Photocatalytic bromination performance over several catalysts. Reaction conditions: MAPbBr3 (150 mg), Pt (0.75 wt%)/Ta2O5 (7.5 mg), PEDOT:PSS (200 μL), saturated aqueous HBr solution (5 mL), substrate (0.05 mmol), 300-W Xe lamp (λ > 420 nm, 160 mW cm-2), Ar atmosphere, room temperature, 6 h. Conversion and selectivity were determined using crude proton nuclear magnetic resonance (1H NMR) spectroscopy. The amount of H2 was determined using a gas chromatograph.
Fig. 3. (a) Effect of organic solvents on the photocatalytic reaction. (b) Effect of the amount of DMF on the photocatalytic reaction. (c) Effect of the DMF analogs S on the photocatalytic reaction. Reaction conditions: MAPbBr3 (150 mg), Pt (0.75 wt%)/Ta2O5 (7.5 mg), PEDOT:PSS (200 μL), saturated aqueous HBr solution (5 mL), substrate (0.05 mmol), organic solvent, 300-W Xe lamp (λ > 420 nm, 160 mW cm-2), Ar atmosphere, room temperature, 6 h. Conversion and selectivity were determined using crude 1H NMR spectroscopy. The amount of H2 was determined using a gas chromatograph.
Entry | Substrate | Product | Time (h) | Conversion b (%) | Selectivity b (%) | [H2] c (%) |
---|---|---|---|---|---|---|
1 | | | 6 | >99 | >99 | >99 |
2 | | | 12 | 86 | >99 | 76 |
3 | | | 16 | >99 | >99 | >99 |
4 | | | 12 | >99 | >99 | 77 |
5 | | | 18 | >99 | >99 | >99 |
6 | | | 6 | >99 | >99 | 80 |
7 | | | 6 | >99 | >99 | 89 |
8 | | | 12 | >99 | >99 | 97 |
9 | | | 19 | >99 | >99 | >99 |
10 | | | 6 | >99 | >99 | 94 |
11 | | | 36 | >99 | >99 | 80 |
12 | | | 23 | >99 | >99 | 91 |
13 | | | 12 | >99 | >99 | >99 |
14 | | | 12 | 45 | >99 | >99 |
15 | | | 12 | >99 | >99 | 80 |
16 | | | 12 | >99 | >99 | >99 |
17 | | | 24 | >99 | >99 | 90 |
Table 1 Photocatalytic bromination of aromatic compounds a.
Entry | Substrate | Product | Time (h) | Conversion b (%) | Selectivity b (%) | [H2] c (%) |
---|---|---|---|---|---|---|
1 | | | 6 | >99 | >99 | >99 |
2 | | | 12 | 86 | >99 | 76 |
3 | | | 16 | >99 | >99 | >99 |
4 | | | 12 | >99 | >99 | 77 |
5 | | | 18 | >99 | >99 | >99 |
6 | | | 6 | >99 | >99 | 80 |
7 | | | 6 | >99 | >99 | 89 |
8 | | | 12 | >99 | >99 | 97 |
9 | | | 19 | >99 | >99 | >99 |
10 | | | 6 | >99 | >99 | 94 |
11 | | | 36 | >99 | >99 | 80 |
12 | | | 23 | >99 | >99 | 91 |
13 | | | 12 | >99 | >99 | >99 |
14 | | | 12 | 45 | >99 | >99 |
15 | | | 12 | >99 | >99 | 80 |
16 | | | 12 | >99 | >99 | >99 |
17 | | | 24 | >99 | >99 | 90 |
Entry | Substrate | Product | Time (h) | Conversion b (%) | Selectivity b (%) | [H2] c(%) |
---|---|---|---|---|---|---|
1 | | | 48 | 73 | >99 | >99 |
2 | | | 72 | 72 | >99 | >99 |
3 | | | 24 | >99 | >99 | >99 |
Table 2 Direct photocatalytic bromination of the natural product, drug and intermediate of materials.
Entry | Substrate | Product | Time (h) | Conversion b (%) | Selectivity b (%) | [H2] c(%) |
---|---|---|---|---|---|---|
1 | | | 48 | 73 | >99 | >99 |
2 | | | 72 | 72 | >99 | >99 |
3 | | | 24 | >99 | >99 | >99 |
Fig. 4. Mechanistic studies. (a) UV-Vis spectra of the solutions for photocatalytic reactions (before reaction, under light, and under light with H3PO2) and 3% bromine water. (b) The Hammett equation of the substituted anisole. Reaction conditions for figure (b): MAPbBr3 (150 mg), Pt(0.75 wt%)/Ta2O5 (7.5 mg), PEDOT:PSS (200 μL), saturated aqueous HBr solution (5 mL), substrate (0.05 mmol), DBF (0.05 mmol), 300-W Xe lamp (λ > 420 nm, 160 mW cm-2), Ar atmosphere, room temperature, 6 h.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[4] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[7] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[8] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[9] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[10] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[11] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[12] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[13] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[14] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[15] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||