Chinese Journal of Catalysis ›› 2024, Vol. 60: 337-350.DOI: 10.1016/S1872-2067(24)60022-7
• Articles • Previous Articles Next Articles
Yongbiao Huaa, Kumar Vikranta, Ki-Hyun Kima,*(), Philippe M. Heynderickxb,c, Danil W. Boukhvalovd,e
Received:
2024-02-02
Accepted:
2024-03-08
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: Yongbiao Hua, Kumar Vikrant, Ki-Hyun Kim, Philippe M. Heynderickx, Danil W. Boukhvalov. Alkali-modified copper manganite spinel for room temperature catalytic oxidation of formaldehyde in air[J]. Chinese Journal of Catalysis, 2024, 60: 337-350.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60022-7
Fig. 2. Physicochemical characterization of the analyzed materials. (a) PXRD patterns of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4. (b) TGA data of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4. (c) N2 adsorption-desorption isotherms of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4. (d) Pore size distributions of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4.
Order | Material | BET surface area (m2 g‒1) | Pore volume (cm3 g‒1) | Actual content a (wt%) | XPS | |||||
---|---|---|---|---|---|---|---|---|---|---|
K | Cu | Mn | Cu+/Cu2+ | Mn3+/Mn4+ | (Oβ+Oγ)/Oα | |||||
1 | CuMn2O4 | 11.54±0.04 | 0.008 | — | 31.73 | 47.88 | 0.40 | 1.58 | 0.59 | |
2 | 0.2-CuMn2O4 | 31.55±0.16 | 0.046 | 0.56 | 28.67 | 49.30 | 0.36 | 2.08 | 0.89 | |
3 | 1-CuMn2O4 | 38.96±0.17 | 0.067 | 0.65 | 28.52 | 50.15 | 0.42 | 2.18 | 1.08 | |
4 | 10-CuMn2O4 | 33.42±0.15 | 0.050 | 1.90 | 22.55 | 50.66 | 0.40 | 2.66 | 1.34 |
Table 1 Physical characteristics and surface elemental compositions of the analyzed materials.
Order | Material | BET surface area (m2 g‒1) | Pore volume (cm3 g‒1) | Actual content a (wt%) | XPS | |||||
---|---|---|---|---|---|---|---|---|---|---|
K | Cu | Mn | Cu+/Cu2+ | Mn3+/Mn4+ | (Oβ+Oγ)/Oα | |||||
1 | CuMn2O4 | 11.54±0.04 | 0.008 | — | 31.73 | 47.88 | 0.40 | 1.58 | 0.59 | |
2 | 0.2-CuMn2O4 | 31.55±0.16 | 0.046 | 0.56 | 28.67 | 49.30 | 0.36 | 2.08 | 0.89 | |
3 | 1-CuMn2O4 | 38.96±0.17 | 0.067 | 0.65 | 28.52 | 50.15 | 0.42 | 2.18 | 1.08 | |
4 | 10-CuMn2O4 | 33.42±0.15 | 0.050 | 1.90 | 22.55 | 50.66 | 0.40 | 2.66 | 1.34 |
Fig. 4. CO2 pulse chemisorption results for CO2 pulse chemisorption results for (●) CuMn2O4, (○) 0.2-CuMn2O4, (■) 1-CuMn2O4, and (□) 10-CuMn2O4. (a) Relative uptake (full uptake corresponds to zero. Saturation peak corresponds to unity, i.e., no uptake). (b) Difference in relative uptake per catalyst, Ai ? Ai?1 with i = 1?20.
Fig. 5. FA removal of the analyzed catalysts. (a) Light-off curves (FA: 50 ppm in air, mcat: 120 mg, flow rate: 50 mL min?1, and RH: 0%). (b) Effect of mcat (catalyst: 1-CuMn2O4, FA: 50 ppm in air, flow rate: 50 mL min?1, and RH: 0%). (c) Effect of flow rate (catalyst: 1-CuMn2O4, FA: 50 ppm in air, mcat: 60 mg, and RH: 0%). (d) Effect of FA concentration (catalyst: 1-CuMn2O4, mcat: 60 mg, flow rate: 50 mL min?1, and RH: 0%). (e) Effect of RH (catalyst: 1-CuMn2O4, FA: 50 ppm in air, mcat: 60 mg, and flow rate: 50 mL min?1). (f) TOS stability (catalyst: 1-CuMn2O4, FA: 50 ppm in air, flow rate: 50 mL min?1, mcat: 30 mg, and RH: 0%). Error bars represent standard deviation of two runs.
Order | Catalyst | Catalyst mass (mg) | Reactant mixture | Pollutant concentration (ppm) | Flow rate (mL min‒1) | Flow rate (mol s‒1) | Space velocity (h‒1) | Maximum XFA (%) at 30 °C | r (mmol gcat‒1 h‒1) at 30 °C |
---|---|---|---|---|---|---|---|---|---|
1 | CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 27.5 | 1.41 × 10‒2 |
2 | 0.2-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 56.1 | 2.87 × 10‒2 |
3 | 1-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
4 | 10-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
Table 2 Performance comparison among 1-CuMn2O4 catalysts in terms of reaction kinetic rates at their maximum achievable removal efficiency against FA.
Order | Catalyst | Catalyst mass (mg) | Reactant mixture | Pollutant concentration (ppm) | Flow rate (mL min‒1) | Flow rate (mol s‒1) | Space velocity (h‒1) | Maximum XFA (%) at 30 °C | r (mmol gcat‒1 h‒1) at 30 °C |
---|---|---|---|---|---|---|---|---|---|
1 | CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 27.5 | 1.41 × 10‒2 |
2 | 0.2-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 56.1 | 2.87 × 10‒2 |
3 | 1-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
4 | 10-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
Fig. 7. Optimized atomic structures and corresponding free energies of the steps of the simulated pathway for XFA over pristine CuMn2O4 and K-doped CuMn2O4 substrate: initial (a), intermediate (b?d), and final steps (e) for pristine CuMn2O4; initial (f), intermediate (g?i), and final steps (j) for K-doped CuMn2O4.
Catalyst | Catalyst activation | mcat (mg) | Reactant mixture | FA concentration (ppm) | Flow rate (mL min‒1) | FFA (mol s‒1) | Space velocity | r (mmol gcat‒1 h‒1)a | T (10% XFA) | Maximum XFA (%) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10% XFA | maximum XFA | ||||||||||||
Graphene oxide/MnO2 | NA | 100 | FA + air c | 100 | 50 | 3.41 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 2.45 × 10‒2 | NA | 20 | [ | |
Partially crystallized MnOx | NA | 2000 | FA + air c | 1 | 52000 | 3.54 × 10‒8 | 48000 h‒1 | NA | 1.34 × 10‒2 | NA | 21 | [ | |
K-MnO2 | NA | 75 | FA + O2(20 vol%) + N2 c +RH50% | 200 | 100 | 1.36 × 10‒8 | 80000 mL g‒1 h‒1 | 6.54 × 10‒2 | 1.96 × 10‒2 | 50 | 3 | [ | |
Pd-CeO2 octahedrons | 200 °C using H2 gas for 1 h | 100 | FA + N2 c +O2 (20%) | 600 | 45 | 1.84 × 10‒8 | 10000 h‒1 | 6.63 × 10‒2 | 2.65 × 10‒2 | 11 | 4 | [ | |
Pd-TS-1(EG) | NA | 100 | FA +O2 (20%) +N2 c | 110 | 100 | 7.50 × 10‒9 | 60000 mL g‒1 h‒1 | 2.70 × 10‒2 | 2.16 × 10‒2 | 35 | 8 | [ | |
Pd-TS-1(CO) | NA | 100 | FA +O2 (20%) + N2 c | 110 | 100 | 7.50 × 10‒9 | 36000 mL h‒1 g‒1 | 2.70 × 10‒2 | 8.10 × 10‒3 | 64 | 3 | [ | |
0.1Pd-Layered double hydroxides | NA | 200 | FA +air/N2 mixture | 50 | 80 | 2.73 × 10‒9 | 24,000 mL h‒1 g‒1 | NA | 1.87 × 10‒2 | NA | 38 | [ | |
0.5%-Pt-4%-CeO2/Activated carbon | 400 °C using 20 vol% H2 gas (mixed with N2 gas) for 5 h | 2800 | FA + air c | 61 | 800 | 3.32652 × 10‒8 | 8000 h‒1 | NA | 4.28× 10‒2 | NA | 100 | [ | |
0.5%-Pt-3%-La/TiO2 | NA | 100 | FA + O2 (21%) + RH50% + N2 c | 0.5 | 100 | 3.40832 × 10‒11 | 60000 mL. g‒1 h‒1 | NA | 1.20 × 10‒3 | NA | 98 | [ | |
0.2%-Pt/MnO2/TiO2 nanotube | at 300 °C using H2 gas for 3 h | 200 | FA+ RH35%+ air c | 50 | 100 | 3.41 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 5.83 × 10‒2 | NA | 95 | [ | |
0.1%-Pt-Ni/ZSM-5 | during synthesis using FA solution | 200 | FA + O2(20 vol%) + N2 c | 50 | 80 | 2.73 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
1%-Pt-K-MnO2 | during synthesis using NaBH4 | 60 | FA + O2 (20 vol%) + N2 c | 20 | 50 | 6.82 × 10‒10 | 50000 mL. g‒1 h‒1 | NA | 4.09 × 10‒2 | NA | 100 | [ | |
3%-Pt-MnOx-CeO2 | at 200 °C using H2 for 1 h | 200 | FA + O2 (20 vol%) + He c | 30 | 100 | 2.04 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 3.68 × 10‒2 | NA | 100 | [ | |
0.8%Pt-FeOOH long rod | NA | 200 | FA + air c | 50 | 80 | 2.73 × 10‒9 | 24000 mL g‒1 h‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
Pt/siliceous beta zeolite | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
Ag/manganese oxides with octahedral molecular sieve | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
1-CuMn2O4 | NA | 60 | FA + air c | 50 | 50 | 1.70 × 10‒9 | 4777 h‒1 | 8.18 × 10‒2b | 1.02 × 10‒1 | 38 | 100 | This work |
Table 3 Performance comparison between 1-CuMn2O4 and other catalysts reported for the RT FA oxidation reaction.
Catalyst | Catalyst activation | mcat (mg) | Reactant mixture | FA concentration (ppm) | Flow rate (mL min‒1) | FFA (mol s‒1) | Space velocity | r (mmol gcat‒1 h‒1)a | T (10% XFA) | Maximum XFA (%) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10% XFA | maximum XFA | ||||||||||||
Graphene oxide/MnO2 | NA | 100 | FA + air c | 100 | 50 | 3.41 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 2.45 × 10‒2 | NA | 20 | [ | |
Partially crystallized MnOx | NA | 2000 | FA + air c | 1 | 52000 | 3.54 × 10‒8 | 48000 h‒1 | NA | 1.34 × 10‒2 | NA | 21 | [ | |
K-MnO2 | NA | 75 | FA + O2(20 vol%) + N2 c +RH50% | 200 | 100 | 1.36 × 10‒8 | 80000 mL g‒1 h‒1 | 6.54 × 10‒2 | 1.96 × 10‒2 | 50 | 3 | [ | |
Pd-CeO2 octahedrons | 200 °C using H2 gas for 1 h | 100 | FA + N2 c +O2 (20%) | 600 | 45 | 1.84 × 10‒8 | 10000 h‒1 | 6.63 × 10‒2 | 2.65 × 10‒2 | 11 | 4 | [ | |
Pd-TS-1(EG) | NA | 100 | FA +O2 (20%) +N2 c | 110 | 100 | 7.50 × 10‒9 | 60000 mL g‒1 h‒1 | 2.70 × 10‒2 | 2.16 × 10‒2 | 35 | 8 | [ | |
Pd-TS-1(CO) | NA | 100 | FA +O2 (20%) + N2 c | 110 | 100 | 7.50 × 10‒9 | 36000 mL h‒1 g‒1 | 2.70 × 10‒2 | 8.10 × 10‒3 | 64 | 3 | [ | |
0.1Pd-Layered double hydroxides | NA | 200 | FA +air/N2 mixture | 50 | 80 | 2.73 × 10‒9 | 24,000 mL h‒1 g‒1 | NA | 1.87 × 10‒2 | NA | 38 | [ | |
0.5%-Pt-4%-CeO2/Activated carbon | 400 °C using 20 vol% H2 gas (mixed with N2 gas) for 5 h | 2800 | FA + air c | 61 | 800 | 3.32652 × 10‒8 | 8000 h‒1 | NA | 4.28× 10‒2 | NA | 100 | [ | |
0.5%-Pt-3%-La/TiO2 | NA | 100 | FA + O2 (21%) + RH50% + N2 c | 0.5 | 100 | 3.40832 × 10‒11 | 60000 mL. g‒1 h‒1 | NA | 1.20 × 10‒3 | NA | 98 | [ | |
0.2%-Pt/MnO2/TiO2 nanotube | at 300 °C using H2 gas for 3 h | 200 | FA+ RH35%+ air c | 50 | 100 | 3.41 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 5.83 × 10‒2 | NA | 95 | [ | |
0.1%-Pt-Ni/ZSM-5 | during synthesis using FA solution | 200 | FA + O2(20 vol%) + N2 c | 50 | 80 | 2.73 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
1%-Pt-K-MnO2 | during synthesis using NaBH4 | 60 | FA + O2 (20 vol%) + N2 c | 20 | 50 | 6.82 × 10‒10 | 50000 mL. g‒1 h‒1 | NA | 4.09 × 10‒2 | NA | 100 | [ | |
3%-Pt-MnOx-CeO2 | at 200 °C using H2 for 1 h | 200 | FA + O2 (20 vol%) + He c | 30 | 100 | 2.04 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 3.68 × 10‒2 | NA | 100 | [ | |
0.8%Pt-FeOOH long rod | NA | 200 | FA + air c | 50 | 80 | 2.73 × 10‒9 | 24000 mL g‒1 h‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
Pt/siliceous beta zeolite | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
Ag/manganese oxides with octahedral molecular sieve | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
1-CuMn2O4 | NA | 60 | FA + air c | 50 | 50 | 1.70 × 10‒9 | 4777 h‒1 | 8.18 × 10‒2b | 1.02 × 10‒1 | 38 | 100 | This work |
|
[1] | Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. The effects of nitrogen-doping on photocatalytic mineralization of TiO2 nanocatalyst against formaldehyde in ambient air [J]. Chinese Journal of Catalysis, 2024, 59(4): 303-323. |
[2] | Yuting Liu, Beili Nie, Ning Li, Huifang Liu, Feng Wang. Chlorine radical-mediated photocatalytic C(sp3)-H bond oxidation of aryl ethers to esters [J]. Chinese Journal of Catalysis, 2024, 58(3): 123-128. |
[3] | Yanbin Qi, Yihua Zhu, Hongliang Jiang, Chunzhong Li. Promoting electrocatalytic oxidation of methanol to formate through interfacial interaction in NiMo oxide-CoMo oxide mixture-derived catalysts [J]. Chinese Journal of Catalysis, 2024, 56(1): 139-149. |
[4] | Shanfan Lin, Yuchun Zhi, Wenna Zhang, Xiaoshuai Yuan, Chengwei Zhang, Mao Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde [J]. Chinese Journal of Catalysis, 2023, 46(3): 11-27. |
[5] | Peiwen Wu, Chang Deng, Feng Liu, Haonan Zhu, Linlin Chen, Ruoyu Liu, Wenshuai Zhu, Chunming Xu. Magnetically recyclable high-entropy metal oxide catalyst for aerobic catalytic oxidative desulfurization [J]. Chinese Journal of Catalysis, 2023, 54(11): 238-249. |
[6] | Yuxuan Lu, Liu Yang, Yimin Jiang, Zhenran Yuan, Shuangyin Wang, Yuqin Zou. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion [J]. Chinese Journal of Catalysis, 2023, 53(10): 153-160. |
[7] | Zhenyu Li, Liyuan Huai, Panpan Hao, Xi Zhao, Yongzhao Wang, Bingsen Zhang, Chunlin Chen, Jian Zhang. Oxidation of 2,5-bis(hydroxymethyl)furan to 2,5-furandicarboxylic acid catalyzed by carbon nanotube-supported Pd catalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 793-801. |
[8] | Zhen Liu, Jian Tian, Changlin Yu, Qizhe Fan, Xingqiang Liu. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation [J]. Chinese Journal of Catalysis, 2022, 43(2): 472-484. |
[9] | Chen Zhao, Zhihua Wang, Xi Chen, Hongyu Chu, Huifen Fu, Chong-Chen Wang. Robust photocatalytic benzene degradation using mesoporous disk-like N-TiO2 derived from MIL-125(Ti) [J]. Chinese Journal of Catalysis, 2020, 41(8): 1186-1197. |
[10] | Sara Colussi, Paolo Fornasiero, Alessandro Trovarelli. Structure-activity relationship in Pd/CeO2 methane oxidation catalysts [J]. Chinese Journal of Catalysis, 2020, 41(6): 938-950. |
[11] | Junhui Zhou, Guanlan Liu, Quanguo Jiang, Weina Zhao, Zhimin Ao, Taicheng An. Density functional theory calculations on single atomic catalysis: Ti-decorated Ti3C2O2 monolayer (MXene) for HCHO oxidation [J]. Chinese Journal of Catalysis, 2020, 41(10): 1633-1644. |
[12] | Yachao Lu, Xiaoyu Ou, Wenguang Wang, Jiajie Fan, Kangle Lv. Fabrication of TiO2 nanofiber assembly from nanosheets (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity [J]. Chinese Journal of Catalysis, 2020, 41(1): 209-218. |
[13] | Chenxi Zhang, Peiyuan Zhao, Shuangxi Liu, Kai Yu. Three-dimensionally ordered macroporous perovskite materials for environmental applications [J]. Chinese Journal of Catalysis, 2019, 40(9): 1324-1338. |
[14] | Haoling Ye, Yiqiu Liu, Si Chen, Haiqiang Wang, Zhen Liu, Zhongbiao Wu. Synergetic effect between non-thermal plasma and photocatalytic oxidation on the degradation of gas-phase toluene: Role of ozone [J]. Chinese Journal of Catalysis, 2019, 40(5): 681-690. |
[15] | Yuetan Su, Wenlang Li, Guiying Li, Zhimin Ao, Taicheng An. Density functional theory investigation of the enhanced adsorption mechanism and potential catalytic activity for formaldehyde degradation on Al-decorated C2N monolayer [J]. Chinese Journal of Catalysis, 2019, 40(5): 664-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||