Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (2): 472-484.DOI: 10.1016/S1872-2067(21)63876-7
• Article • Previous Articles Next Articles
Zhen Liua,†, Jian Tianb,†, Changlin Yua,*(), Qizhe Fana, Xingqiang Liuc,#(
)
Received:
2021-05-01
Accepted:
2021-05-01
Online:
2022-02-18
Published:
2021-07-02
Contact:
Zhen Liu, Jian Tian, Changlin Yu, Xingqiang Liu
Supported by:
Zhen Liu, Jian Tian, Changlin Yu, Qizhe Fan, Xingqiang Liu. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation[J]. Chinese Journal of Catalysis, 2022, 43(2): 472-484.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63876-7
Fig. 1. XRD patterns of the prepared samples. (a) Survey patterns of BMO and OVBMO; (b) Magnified patterns of diffraction by the (131) crystal planes of the samples.
Fig. 3. FT-IR spectra of the samples. (a) Full-spectrum; (b) Enlargement of the absorption bands from 500 to 1160 cm-1; (c) Raman spectra of BMO and 2-OVBMO (inset, magnification of the spectra in the range of 720-900 cm-1).
Sample | Bandgap energy Eg (eV) |
---|---|
BMO | 2.66 |
0.5-OVBMO | 2.62 |
1-OVBMO | 2.61 |
1.5-OVBMO | 2.49 |
2-OVBMO | 2.36 |
2.5-OVBMO | 2.25 |
Table 1 Bandgap energies of samples.
Sample | Bandgap energy Eg (eV) |
---|---|
BMO | 2.66 |
0.5-OVBMO | 2.62 |
1-OVBMO | 2.61 |
1.5-OVBMO | 2.49 |
2-OVBMO | 2.36 |
2.5-OVBMO | 2.25 |
Sample | Specific surface area (m2/g) | Pore volume (cm3/g) | Average pore size (nm) |
---|---|---|---|
BMO | 2.64 | 0.0181 | 27.43 |
0.5-OVBMO | 12.67 | 0.1074 | 24.68 |
1-OVBMO | 15.46 | 0.1031 | 25.16 |
1.5-OVBMO | 16.05 | 0.1301 | 26.77 |
2-OVBMO | 20.90 | 0.1519 | 23.71 |
2.5-OVBMO | 20.05 | 0.1422 | 23.14 |
Table 2 Specific surface areas, pore volumes, and pore diameters of the samples.
Sample | Specific surface area (m2/g) | Pore volume (cm3/g) | Average pore size (nm) |
---|---|---|---|
BMO | 2.64 | 0.0181 | 27.43 |
0.5-OVBMO | 12.67 | 0.1074 | 24.68 |
1-OVBMO | 15.46 | 0.1031 | 25.16 |
1.5-OVBMO | 16.05 | 0.1301 | 26.77 |
2-OVBMO | 20.90 | 0.1519 | 23.71 |
2.5-OVBMO | 20.05 | 0.1422 | 23.14 |
Sample | τ1/ns | τ2/ns | τ3/ns | τ/ns |
---|---|---|---|---|
BMO | 2.37 | 2.37 | 11.90 | 7.86 |
2-OVBMO | 1.11 | 3.76 | 27.39 | 21.87 |
Table 3 Lifetimes (τ1, τ2, τ3, and τ) obtained by fitting the time-resolved fluorescence decay spectra.
Sample | τ1/ns | τ2/ns | τ3/ns | τ/ns |
---|---|---|---|---|
BMO | 2.37 | 2.37 | 11.90 | 7.86 |
2-OVBMO | 1.11 | 3.76 | 27.39 | 21.87 |
Fig. 9. Photocatalytic performance of BMO and OVBMO in the degradation of CPFX: (a) Adsorption performance; (b) Adsorption-photocatalytic degradation process; (c) Removal rate; (d) Recycle test on 2-OVBMO. Photocatalytic degradation of 20 ppm OTTCH (e) and 20 ppm TC (f) over BMO and OVBMO samples.
Entry | Catalyst | Addition | Base | Solvent | Yield a,b (%) |
---|---|---|---|---|---|
1 | 2-OVBMO | TEMPO | K2CO3(1.0 eq) | i-PrOH | 18 |
2 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | 35 |
3 | 2-OVBMO | TEMPO | none | i-PrOH | 5 |
4 | 2-OVBMO | TEMPO | t-BuOK(0.5 eq) | i-PrOH | 21 |
5 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | MeCN | n.d |
6 | 2-OVBMO | None | K2CO3(0.5 eq) | i-PrOH | trace |
7 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | n.d c |
8 | BMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | trace |
9 | none | TEMPO | K2CO3(0.5 eq) | i-PrOH | n.d |
10 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | n.d d |
Table 4 Optimization of the reaction conditions.
Entry | Catalyst | Addition | Base | Solvent | Yield a,b (%) |
---|---|---|---|---|---|
1 | 2-OVBMO | TEMPO | K2CO3(1.0 eq) | i-PrOH | 18 |
2 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | 35 |
3 | 2-OVBMO | TEMPO | none | i-PrOH | 5 |
4 | 2-OVBMO | TEMPO | t-BuOK(0.5 eq) | i-PrOH | 21 |
5 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | MeCN | n.d |
6 | 2-OVBMO | None | K2CO3(0.5 eq) | i-PrOH | trace |
7 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | n.d c |
8 | BMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | trace |
9 | none | TEMPO | K2CO3(0.5 eq) | i-PrOH | n.d |
10 | 2-OVBMO | TEMPO | K2CO3(0.5 eq) | i-PrOH | n.d d |
|
[1] | Xinjie Song, Shipeng Fan, Zehua Cai, Zhou Yang, Xun Chen, Xianzhi Fu, Wenxin Dai. NH3 synthesis via visible-light-assisted thermocatalytic NO reduction by CO in the presence of H2O over Cu/CeO2 [J]. Chinese Journal of Catalysis, 2023, 49(6): 168-179. |
[2] | Keran Wang, Lei Luo, Chao Wang, Junwang Tang. Photocatalytic methane activation by dual reaction sites co-modified WO3 [J]. Chinese Journal of Catalysis, 2023, 46(3): 103-112. |
[3] | Huizhong Wu, Jiadong Wang, Ruimin Chen, Chaowei Yuan, Jin Zhang, Yuxin Zhang, Jianping Sheng, Fan Dong. Zn-doping mediated formation of oxygen vacancies in SnO2 with unique electronic structure for efficient and stable photocatalytic toluene degradation [J]. Chinese Journal of Catalysis, 2021, 42(7): 1195-1204. |
[4] | Xue Chen, Ming-Yu Qi, Yue-Hua Li, Zi-Rong Tang, Yi-Jun Xu. Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies [J]. Chinese Journal of Catalysis, 2021, 42(11): 2020-2026. |
[5] | Pengfei Zhu, Xiaohe Yin, Xinhua Gao, Guohui Dong, Jingkun Xu, Chuanyi Wang. Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies [J]. Chinese Journal of Catalysis, 2021, 42(1): 175-183. |
[6] | Aisulu Aitbekova, Cody J. Wrasman, Andrew R. Riscoe, Larissa Y. Kunz, Matteo Cargnello. Determining number of sites on ceria stabilizing single atoms via metal nanoparticle redispersion [J]. Chinese Journal of Catalysis, 2020, 41(6): 998-1005. |
[7] | Jiazhen Liao, Lvcun Chen, Minglu Sun, Ben Lei, Xiaolan Zeng, Yanjuan Sun, Fan Dong. Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies [J]. Chinese Journal of Catalysis, 2018, 39(4): 779-789. |
[8] | Jiangyong Liu, Tingting Chen, Panming Jian, Lixia Wang. Hierarchical 0D/2D Co3O4 hybrids rich in oxygen vacancies as catalysts towards styrene epoxidation reaction [J]. Chinese Journal of Catalysis, 2018, 39(12): 1942-1950. |
[9] | Cheng Rao, Rui Liu, Xiaohui Feng, Jiating Shen, Honggen Peng, Xianglan Xu, Xiuzhong Fang, Jianjun Liu, Xiang Wang. Three-dimensionally ordered macroporous SnO2-based solid solution catalysts for effective soot oxidation [J]. Chinese Journal of Catalysis, 2018, 39(10): 1683-1694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||