Chinese Journal of Catalysis ›› 2024, Vol. 62: 124-130.DOI: 10.1016/S1872-2067(24)60071-9
• Communication • Previous Articles Next Articles
Sam Van Minnebruggena, Ka Yan Cheunga, Trees De Baerdemaekerb, Niels Van Velthovena, Matthias Degelina, Galahad O’Rourkea, Hiroto Toyodac, Andree Iemhoffb, Imke Mullerb, Andrei-Nicolae Parvulescub, Torsten Mattkeb, Jens Ferbitzb, Qinming Wud, Feng-Shou Xiaod, Toshiyuki Yokoic, Nils Bottkeb, Dirk De Vosa,*()
Received:
2024-04-03
Accepted:
2024-06-05
Online:
2024-07-18
Published:
2024-07-10
Contact:
E-mail: Sam Van Minnebruggen, Ka Yan Cheung, Trees De Baerdemaeker, Niels Van Velthoven, Matthias Degelin, Galahad O’Rourke, Hiroto Toyoda, Andree Iemhoff, Imke Muller, Andrei-Nicolae Parvulescu, Torsten Mattke, Jens Ferbitz, Qinming Wu, Feng-Shou Xiao, Toshiyuki Yokoi, Nils Bottke, Dirk De Vos. Isomerization of methylenedianilines using shape-selective zeolites[J]. Chinese Journal of Catalysis, 2024, 62: 124-130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60071-9
Fig. 1. Product distribution obtained in the solventless MDA isomerization for *BEA topology zeolites with different Si/Al mass ratio. Conditions: 50 mg zeolite, 250 mg 2,4’-MDA at 170 °C for 6 h.
Fig. 2. Product distribution obtained in the MDA isomerization for *BEA topology with varying aniline quantity. Mass ratio of Beta (Si/Al = 12.5):MDA:aniline = 0.2:1:x, with x = 0?8 at 170 °C for 24 h.
Fig. 3. Role of aniline in the isomerization of 2,4’-MDA using zeolite Beta. Conditions: 100 mg Beta (Si/Al = 12.5), 500 mg 2,4’-MDA and x mol L?1 aniline at 170 °C. The kinetic values represent respectively the following: kiso,1 (2,4’→ 4,4’), kiso,2 (2,4’→ 2,2’) and koligo (MDA → oligomer).
Fig. 4. Temperature dependence of the rate constant for isomerization of 2,4’- to 4,4’-MDA and derived apparent activation energies. Conditions: 100 mg zeolite Beta (Si/Al = 12.5), 500 mg 2,4’-MDA and 200 μL aniline at 140?200 °C.
Catalyst | Topology | Si/Al | kiso,1 (10‒6 s‒1)a | kiso,-1 (10‒6 s‒1) | kiso,2 (10‒6 s‒1) | kiso,-2 (10‒6 s‒1) | koligo (10‒7 s‒1) |
---|---|---|---|---|---|---|---|
CF3SO3Hb | — | — | 2.7 | 19.7c | 1.0 | 0.5 | 4.2 |
ZSM-5 | MFI | 15 | 0.4 | 0.6 | 0.2 | 0.5 | 0.4 |
Mordenite | MOR | 10 | 0.6 | 0.6 | 0.3 | 0.5 | 0.4 |
Beta | *BEA | 12.5 | 5.3 | 0.5 | 0.3 | 1.0 | 2.3 |
Faujasite | FAU | 40 | 1.9 | 0.1 | 0.3 | 0.2 | 0.1 |
MCM-68 | MSE | 10.8 | 4.7 | 0.6 | 0.2 | 0.5 | 0.2 |
UZM-35 | MSE | 7.8 | 1.0 | 0.1 | 0.3 | 1.0 | 0.5 |
YNU-5 | YFI | 9.8 | 4.8 | 15.0 | 0.6 | 0.1 | 0.2 |
MCM-22 | MWW | 14 | 0.5 | 5.3 | 19.9 | 215 | 2.0 |
Table 1 Kinetic parameters for different acid catalysts. Conditions: 100 mg zeolite, 500 mg 2,4’-MDA and 1.2 mL aniline at 170 °C.
Catalyst | Topology | Si/Al | kiso,1 (10‒6 s‒1)a | kiso,-1 (10‒6 s‒1) | kiso,2 (10‒6 s‒1) | kiso,-2 (10‒6 s‒1) | koligo (10‒7 s‒1) |
---|---|---|---|---|---|---|---|
CF3SO3Hb | — | — | 2.7 | 19.7c | 1.0 | 0.5 | 4.2 |
ZSM-5 | MFI | 15 | 0.4 | 0.6 | 0.2 | 0.5 | 0.4 |
Mordenite | MOR | 10 | 0.6 | 0.6 | 0.3 | 0.5 | 0.4 |
Beta | *BEA | 12.5 | 5.3 | 0.5 | 0.3 | 1.0 | 2.3 |
Faujasite | FAU | 40 | 1.9 | 0.1 | 0.3 | 0.2 | 0.1 |
MCM-68 | MSE | 10.8 | 4.7 | 0.6 | 0.2 | 0.5 | 0.2 |
UZM-35 | MSE | 7.8 | 1.0 | 0.1 | 0.3 | 1.0 | 0.5 |
YNU-5 | YFI | 9.8 | 4.8 | 15.0 | 0.6 | 0.1 | 0.2 |
MCM-22 | MWW | 14 | 0.5 | 5.3 | 19.9 | 215 | 2.0 |
Fig. 5. Shape-selectivity in MDA isomerization, comparing zeolite Beta and MCM-68. Conditions: 100 mg zeolite, 500 mg MDA and 0.2 mL aniline at 170 °C. Beta (Si/Al = 12.5) in the isomerization of (a) 2,4’- and (b) 4,4’-MDA. MCM-68 in the isomerization of (c) 2,4’- and (d) 4,4’-MDA.
Fig. 6. Proposed origin of shape-selectivity in MCM-68. (a) Concept of 10-MR docked aniline reacting with a 4-NH2-benzylium cation at the intersection with 12-MR. (b,d) optimized structures for the reactants at the intersection, leading to resp. 4,4’- and 2,4’-MDA. (c,e) Optimized structures of the carbo-cationic intermediates at the intersection, leading to resp. 4,4’- and 2,4’-MDA.
|
[1] | Yang Li, Xiong Wang, Xing-Sheng Hu, Biao Hu, Sheng Tian, Bing-Hao Wang, Lang Chen, Guang-Hui Chen, Chao Peng, Sheng Shen, Shuang-Feng Yin. Pd loaded TiO2 as recyclable catalyst for benzophenone synthesis by coupling benzaldehyde with iodobenzene under UV light [J]. Chinese Journal of Catalysis, 2024, 59(4): 159-168. |
[2] | Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation [J]. Chinese Journal of Catalysis, 2024, 58(3): 138-145. |
[3] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism [J]. Chinese Journal of Catalysis, 2024, 58(3): 237-246. |
[4] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 2: Catalytic performance and reaction mechanism in CO oxidation [J]. Chinese Journal of Catalysis, 2024, 58(3): 247-254. |
[5] | Jian Dang, Weijie Li, Bin Qin, Yuchao Chai, Guangjun Wu, Landong Li. Self-adjusted reaction pathway enables efficient oxidation of aromatic C-H bonds over zeolite-encaged single-site cobalt catalyst [J]. Chinese Journal of Catalysis, 2024, 57(2): 133-142. |
[6] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[7] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[8] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[9] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[10] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[11] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[12] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[13] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[14] | Chunpeng Wang, Zhe Wang, Shanjun Mao, Zhirong Chen, Yong Wang. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 928-955. |
[15] | Hui Chen, Bo Zhang, Xiao Liang, Xiaoxin Zou. Light alloying element-regulated noble metal catalysts for energy-related applications [J]. Chinese Journal of Catalysis, 2022, 43(3): 611-635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||