Chinese Journal of Catalysis ›› 2024, Vol. 64: 98-111.DOI: 10.1016/S1872-2067(24)60104-X
• Articles • Previous Articles Next Articles
Jiaheng Qina,1, Wantong Zhaob,1, Jie Songa, Nan Luoa, Zheng-Lan Maa, Baojun Wangb, Jiantai Maa, Riguang Zhangb,*(), Yu Longa,*(
)
Received:
2024-04-30
Accepted:
2024-07-03
Online:
2024-09-18
Published:
2024-09-19
Contact:
* E-mail: About author:
1Contributed equally to this work.
Supported by:
Jiaheng Qin, Wantong Zhao, Jie Song, Nan Luo, Zheng-Lan Ma, Baojun Wang, Jiantai Ma, Riguang Zhang, Yu Long. Single atom doping induced charge-specific distribution of Cu1-TiO2 for selective aniline oxidation via a new mechanism[J]. Chinese Journal of Catalysis, 2024, 64: 98-111.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60104-X
Fig. 1. (a) Aniline oxidation over different catalysts. (b) Aniline oxidation over a series of Cu doped TiO2 based catalysts with different calcination temperature. (c) Optimization of the reaction temperature. (d) Optimization of the H2O2 amount.
Fig. 3. (a) XRD patterns of the as-prepared catalysts. (b) Ti 2p XPS spectra of TiO2 and Cu1-TiO2. (c) Cu 2p XPS spectrum of Cu1-TiO2. (d) O 1s XPS spectrum of TiO2 and Cu1-TiO2. (e) AC-HAADF-STEM image of Cu1-TiO2 (left), the intensity profiles of the atoms on the lattice fringes marked (right).
Fig. 4. (a) Ti K-edge XANES spectra for the as-prepared catalysts. (b) Ti K-edge EXAFS spectra for the as-prepared catalysts. (c) Cu K-edge XANES spectra for the as-prepared catalysts. (d) Cu K-edge EXAFS spectra for the as-prepared catalysts.
Fig. 5. Electron density and Bader charge of surface atoms over TiO2 (a), Cu1-TiO2 (b) and CuO (c) catalysts. The black number represents the loss electron number of surface Cu or Ti atom; the white number represents the total gain electron number of O atom around Cu atoms, the orange, red and grey balls are Cu, O and Ti atom, respectively.
Entry | Catalyst (mg) | Substrate (mmol) | PhNHOH Con. c (%) | BA Sel. c (%) | AOB Sel. c (%) | NSB Sel. c (%) |
---|---|---|---|---|---|---|
1a | — | PhNHOH (0.5) | 16 | 12 | 85 | 3 |
2a | TiO2 (30) | PhNHOH (0.5) | 100 | — | 96 | 4 |
3a | CuO (30) | PhNHOH (0.5) | 80 | 4 | 57 | 39 |
4a | Cu2O (30) | PhNHOH (0.5) | 83 | 2 | 67 | 31 |
5a | Cu1-TiO2 (30) | PhNHOH (0.5) | 88 | 2 | 20 | 78 |
6b | — | PhNHOH (0.5) + NSB (0.5) | 28 | — | 100 | — |
7b | TiO2 (30) | PhNHOH (0.5) + NSB (0.5) | 28 | — | 100 | — |
8b | CuO (30) | PhNHOH (0.5) + NSB (0.5) | 29 | — | 100 | — |
9b | Cu1-TiO2 (30) | PhNHOH (0.5) + NSB (0.5) | 28 | — | 100 | — |
Table 1 Experiments on investigating the reaction mechanism over different catalysts.
Entry | Catalyst (mg) | Substrate (mmol) | PhNHOH Con. c (%) | BA Sel. c (%) | AOB Sel. c (%) | NSB Sel. c (%) |
---|---|---|---|---|---|---|
1a | — | PhNHOH (0.5) | 16 | 12 | 85 | 3 |
2a | TiO2 (30) | PhNHOH (0.5) | 100 | — | 96 | 4 |
3a | CuO (30) | PhNHOH (0.5) | 80 | 4 | 57 | 39 |
4a | Cu2O (30) | PhNHOH (0.5) | 83 | 2 | 67 | 31 |
5a | Cu1-TiO2 (30) | PhNHOH (0.5) | 88 | 2 | 20 | 78 |
6b | — | PhNHOH (0.5) + NSB (0.5) | 28 | — | 100 | — |
7b | TiO2 (30) | PhNHOH (0.5) + NSB (0.5) | 28 | — | 100 | — |
8b | CuO (30) | PhNHOH (0.5) + NSB (0.5) | 29 | — | 100 | — |
9b | Cu1-TiO2 (30) | PhNHOH (0.5) + NSB (0.5) | 28 | — | 100 | — |
Fig. 7. (a) Free energy profiles of AOB or NSB production from PhNHOH conversion over TiO2; Activation ways of PhNHOH and PhNOH at different adsorption sites and the barrier required for the corresponding process over (b) Cu1-TiO2 and (c) CuO catalysts, the balls in the dotted box are the possible adsorption sites. (d) Differential charge density of PhNOH adsorbed over TiO2, Cu1-TiO2 and CuO catalysts, the blue and yellow regions represent charge loss and gain, respectively.
Fig. 8. The d-band center of (a) Cu1-TiO2, (b) TiO2 and (c) CuO catalyst. (d) Liquid phase experimental of EPR spectra after the reaction of H2O2 with Cu1-TiO2 in presence of DMPO spin trap. (e) Traditional reaction mechanism for aniline oxidation reaction, (f) The possible reaction mechanism of aniline oxidation reaction in this work.
Fig. 9. Recycle tests of TiO2 and Cu1-TiO2 catalysts for aniline oxidation to form AOB (a) and NSB (b) under both low (pink and green) and high (purple and blue) conversion conditions. (c) 100 g scale up experiments for TiO2 and Cu1-TiO2 catalytic systems to produce AOB and NSB.
![]() | |||
---|---|---|---|
![]() 86% | ![]() 72%b | ![]() 88% | ![]() 77%b |
![]() 81% | ![]() 83% | ![]() 87% | ![]() 89% |
![]() 90% | ![]() 86% | ![]() 82% | ![]() 85% |
![]() 83% | ![]() 84% | ![]() 84% | ![]() 85% |
![]() 86% | ![]() 80% |
Table 2 Oxidative of substituted anilines to azoxybenzenes over TiO2 and to nitrosobenzenes over Cu1-TiO2 catalyst a.
![]() | |||
---|---|---|---|
![]() 86% | ![]() 72%b | ![]() 88% | ![]() 77%b |
![]() 81% | ![]() 83% | ![]() 87% | ![]() 89% |
![]() 90% | ![]() 86% | ![]() 82% | ![]() 85% |
![]() 83% | ![]() 84% | ![]() 84% | ![]() 85% |
![]() 86% | ![]() 80% |
|
[1] | Zichao Huang, Tinghui Yang, Yingbing Zhang, Chaoqun Guan, Wenke Gui, Min Kuang, Jianping Yang. Enhancing selectivity in acidic CO2 electrolysis: Cation effects and catalyst innovation [J]. Chinese Journal of Catalysis, 2024, 63(8): 61-80. |
[2] | Sam Van Minnebruggen, Ka Yan Cheung, Trees De Baerdemaeker, Niels Van Velthoven, Matthias Degelin, Galahad O’Rourke, Hiroto Toyoda, Andree Iemhoff, Imke Muller, Andrei-Nicolae Parvulescu, Torsten Mattke, Jens Ferbitz, Qinming Wu, Feng-Shou Xiao, Toshiyuki Yokoi, Nils Bottke, Dirk De Vos. Isomerization of methylenedianilines using shape-selective zeolites [J]. Chinese Journal of Catalysis, 2024, 62(7): 124-130. |
[3] | Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen. Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds [J]. Chinese Journal of Catalysis, 2024, 61(6): 135-143. |
[4] | Chenyu Du, Jianping Sheng, Fengyi Zhong, Ye He, Vitaliy P. Guro, Yanjuan Sun, Fan Dong. Rational design and mechanistic insights of advanced photocatalysts for CO2-to-C2+ production: Status and challenges [J]. Chinese Journal of Catalysis, 2024, 60(5): 25-41. |
[5] | Zhounan Yu, Leilei Zhang, Yuanlong Tan, Rizheng Jing, Hongchen Cao, Caiyi Lou, Rile Ge, Junhu Wang, Aiqin Wang, Tao Zhang. PS-PPh2 tethered Pt single atoms promoted by SnCl2 as highly efficient and regio-selective catalysts for the hydroformylation of higher α-alkenes [J]. Chinese Journal of Catalysis, 2024, 60(5): 316-326. |
[6] | Jie Wang, Yihe Chen, Yuda Wang, Hao Zhao, Jinyu Ye, Qingqing Cheng, Hui Yang. Manipulating the electronic state of ruthenium to boost highly selective electrooxidation of ethylene to ethylene glycol in acid [J]. Chinese Journal of Catalysis, 2024, 60(5): 376-385. |
[7] | Chaochen Wang, Wangxin Ge, Lei Tang, Yanbin Qi, Lei Dong, Hongliang Jiang, Jianhua Shen, Yihua Zhu, Chunzhong Li. Highly selective CO2-to-CO electroreduction on multisite coordinated single-atom-modified atomic cluster Cu-based catalyst [J]. Chinese Journal of Catalysis, 2024, 59(4): 324-333. |
[8] | Zidong Wei, Xun Huang, Haohong Duan, Mingfei Shao, Rengui Li, Jinli Zhang, Can Li, Xue Duan. Electrochemical synthesis in company with hydrogen production via renewable energy: Opportunities and challenges [J]. Chinese Journal of Catalysis, 2024, 58(3): 1-6. |
[9] | Qian Zhang, Xunzhu Jiang, Yang Su, Yang Zhao, Botao Qiao. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 57(2): 105-113. |
[10] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
[11] | Zhipeng Guan, Dongfeng Yang, Zhao Liu, Shuxiang Zhu, Xingxing Zhong, Huamin Wang, Xiangwei Li, Xiaotian Qi, Hong Yi, Aiwen Lei. Regioselective electrochemical oxidative radical ortho-(4 + 2)/ipso-(3 + 2) cyclization [J]. Chinese Journal of Catalysis, 2023, 52(9): 144-153. |
[12] | Yinqi Wu, Qianqian Chen, Qi Chen, Qiang Geng, Qiaoyu Zhang, Yu-Cong Zheng, Chen Zhao, Yan Zhang, Jiahai Zhou, Binju Wang, Jian-He Xu, Hui-Lei Yu. Precise regulation of the substrate selectivity of Baeyer-Villiger monooxygenase to minimize overoxidation of prazole sulfoxides [J]. Chinese Journal of Catalysis, 2023, 51(8): 157-167. |
[13] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
[14] | Hao Zhang, Yaqiong Su, Nikolay Kosinov, Emiel J. M. Hensen. Non-oxidative coupling of methane over Mo-doped CeO2 catalysts: Understanding surface and gas-phase processes [J]. Chinese Journal of Catalysis, 2023, 49(6): 68-80. |
[15] | Jiao Wang, Fangfang Zhu, Biyi Chen, Shuang Deng, Bochen Hu, Hong Liu, Meng Wu, Jinhui Hao, Longhua Li, Weidong Shi. B atom dopant-manipulate electronic structure of CuIn nanoalloy delivering wide potential activity over electrochemical CO2RR [J]. Chinese Journal of Catalysis, 2023, 49(6): 132-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||