Chinese Journal of Catalysis ›› 2025, Vol. 72: 314-322.DOI: 10.1016/S1872-2067(25)64680-8
• Articles • Previous Articles Next Articles
Cheng Lia,b, Xudong Fanga,*(), Bin Lia,b, Siyang Yanc, Zhiyang Chena, Leilei Yanga,b, Shaowen Haoa,b, Hongchao Liua, Jiaxu Liuc,*(
), Wenliang Zhua,*(
)
Received:
2025-01-24
Accepted:
2025-03-26
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: xdfang@dicp.ac.cn (X. Fang), liujiaxu@dlut.edu.cn (J. Liu), wlzhu@dicp.ac.cn (W. Zhu).
Supported by:
Cheng Li, Xudong Fang, Bin Li, Siyang Yan, Zhiyang Chen, Leilei Yang, Shaowen Hao, Hongchao Liu, Jiaxu Liu, Wenliang Zhu. Efficient carbon integration of CO2 in propane aromatization over acidic zeolites[J]. Chinese Journal of Catalysis, 2025, 72: 314-322.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64680-8
Fig. 1. CO2-C3H8 co-conversion to aromatics over acidic zeolites with varied framework structures. (a) Schematic illustration of the co-conversion strategy. (b) Catalytic performances of different zeolitic topologies in propane aromatization, with and without CO2 co-feeding. (c) Propane conversion and product distribution over H-ZSM-5 at 0.1 MPa under various gas atmospheres. (d) Aromatic selectivity profiles over H-ZSM-5 at 3.0 MPa under different reaction environments. Reaction conditions: (b,d) 723 K, 20 kPa C3H8, (2570 kPa CO2, 410 kPa Ar solid) or (2980 kPa Ar dash), 1000 mL/gcat/h; (c) 723 K, 0.72 kPa C3H8, (86.85 kPa CO2, 13.43 kPa Ar) or (100.28 kPa Ar), 1000 mL/gcat/h. Note that olefins represent C2=-C4=, alkanes represent C1-C40 (apart from C3H8), and others represent C5+ hydrocarbon excluding aromatics.
Fig. 2. Catalytic behavior of H-ZSM-5 catalysts with varying SiO2/Al2O3 ratios on the co-conversion of CO2 and C3H8. (a) Selectivity distribution of main products. (b) Correlation between aluminum content in H-ZSM-5 and the selectivity toward aromatics, alkanes, and olefins. Reaction conditions: (a) 723 K, 20 kPa C3H8, (2570 kPa CO2, 410 kPa Ar) or (2980 kPa Ar), 1000 mL/gcat/h; (b) 723 K, 20 kPa C3H8, 2570 kPa CO2, 410 kPa Ar, 1000 mL/gcat/h; Note that olefins represent C2=-C4=, alkanes represent C1-C40 (apart from C3H8), and others represent C5+ hydrocarbon excluding aromatics.
Fig. 3. Impact of reaction parameters on the co-conversion of CO2 and C3H8 over H-ZSM-5-25. (a) Variation in propane conversion and product distribution with total reaction pressure. (b) Dependence of C3H8 conversion and product selectivity on reaction temperature. (c) Effect of CO2 partial pressure on selectivity trends and converted CO2/ C3H8 ratios. (d) Product profile and propane conversion as a function of contact time. Reaction conditions: (a) 723 K, C3H8:CO2 = 1:120, 1000 mL/gcat/h; (b) 20 kPa C3H8, 2570 kPa CO2, 410 kPa Ar, 1000 mL/gcat/h; (c) 723 K, 20 kPa C3H8, 0-2570 kPa CO2, 1000 mL/gcat/h, Ar as balance gas; (d) 723 K, 20 kPa C3H8, 2570 kPa CO2, 410 kPa Ar. Note that olefins represent C2=-C4=, alkanes represent C1-C40 (apart from C3H8), and others represent C5+ hydrocarbon excluding aromatics.
Fig. 4. Mechanistic investigation of the CO2-C3H8 co-conversion over H-ZSM-5-25. (a) Correlation between contact time and light hydrocarbon formation. (b) Effect of contact time on residual surface species and aromatic selectivity. (c) Operando dual-beam FTIR spectra of propane conversion under different gas atmospheres. (d) 13C isotope distribution in aromatic products. (e) 13C liquid-state NMR spectra of products derived from the coupling reaction between 13CO2 and C3H8. Reaction conditions: (a,b) 723 K, 20 kPa C3H8, 2570 kPa CO2, 410 kPa Ar; (c) 423-723 K, 1.0 MPa, C3H8:CO2 = 1:99 (up), C3H8 : Ar = 1:99 (down), 40000 mL/gcat/h; (d,e) 723 K, 1.5 kPa C3H8, 500 kPa CO2, 798.5 kPa Ar, 1300 mL/gcat/h.
|
[1] | Jianwei Jiang, Vinothkumar Ganesan, Inrack Choi, Jeongcheol Shin, Sungho Yoon, Kiyoung Park. A stable acyl cobalt-based catalyst with exceptionally elevated activity for the carbonylation of epoxides into β-lactones [J]. Chinese Journal of Catalysis, 2025, 68(1): 336-344. |
[2] | Xuke Sun, Rongsheng Liu, Gaili Fan, Yuhan Liu, Fangxiu Ye, Zhengxi Yu, Zhongmin Liu. Understanding the correlation between zinc speciation and coupling conversion of CO2 and n-butane on zinc/ZSM-5 catalysts [J]. Chinese Journal of Catalysis, 2024, 61(6): 154-163. |
[3] | Yamei Gan, Tiantian Chai, Jian Zhang, Cong Gao, Wei Song, Jing Wu, Liming Liu, Xiulai Chen. Light-driven CO2 utilization for chemical production in bacterium biohybrids [J]. Chinese Journal of Catalysis, 2024, 60(5): 294-303. |
[4] | Yingbin Zheng, Xinbao Zhang, Junjie Li, Jie An, Longya Xu, Xiujie Li, Xiangxue Zhu. CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2024, 65(10): 40-69. |
[5] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[6] | Teera Chantarojsiri, Tassaneewan Soisuwan, Pornwimon Kongkiatkrai. Toward green syntheses of carboxylates: Considerations of mechanisms and reactions at the electrodes for electrocarboxylation of organohalides and alkenes [J]. Chinese Journal of Catalysis, 2022, 43(12): 3046-3061. |
[7] | Chuchu Wu, Xiaoming Zhang, Huanqiao Li, Zhangxun Xia, Shansheng Yu, Suli Wang, Gongquan Sun. Iron-based binary metal-organic framework nanorods as an efficient catalyst for the oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2021, 42(4): 637-647. |
[8] | Sixue Lin, Jing Wang, Yangyang Mi, Senyou Yang, Zheng Wang, Wenming Liu, Daishe Wu, Honggen Peng. Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming [J]. Chinese Journal of Catalysis, 2021, 42(10): 1808-1820. |
[9] | Xuejuan Cao, Huai Liu, Junnan Wei, Xing Tang, Xianhai Zeng, Yong Sun, Tingzhou Lei, Geng Zhao, Lu Lin. Effective production of γ-valerolactone from biomass-derived methyl levulinate over CuOx-CaCO3 catalyst [J]. Chinese Journal of Catalysis, 2019, 40(2): 192-203. |
[10] | Ruqun Guan, Xiaoming Zhang, Fangfang Chang, Nan Xue, Hengquan Yang. Incorporation of flexible ionic polymers into a Lewis acid-functionalized mesoporous silica for cooperative conversion of CO2 to cyclic carbonates [J]. Chinese Journal of Catalysis, 2019, 40(12): 1874-1883. |
[11] | Haojie Wang, Chun Chen, Haimin Zhang, Guozhong Wang, Huijun Zhao. An efficient and reusable bimetallic Ni3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone [J]. Chinese Journal of Catalysis, 2018, 39(10): 1599-1607. |
[12] | Lorenzo Landenna, Alberto Villa, Rodolfo Zanella, Claudio Evangelisti, Laura Prati. Gold-iridium catalysts for the hydrogenation of biomass derived products [J]. Chinese Journal of Catalysis, 2016, 37(10): 1771-1775. |
[13] | Xiangdong Long, Peng Sun, Zelong Li, Rui Lang, Chungu Xia, Fuwei Li. Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone [J]. Chinese Journal of Catalysis, 2015, 36(9): 1512-1518. |
[14] | Iker Obregón, Eriz Corro, Urko Izquierdo, Jesus Requies, Pedro L. Arias. Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts [J]. Chinese Journal of Catalysis, 2014, 35(5): 656-662. |
[15] | DU Xianlong, LIU Yongmei, WANG Jianqiang, CAO Yong, FAN Kangnian. Catalytic conversion of biomass-derived levulinic acid into ?-valerolactone using iridium nanoparticles supported on carbon nanotubes [J]. Chinese Journal of Catalysis, 2013, 34(5): 993-1001. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||