Chinese Journal of Catalysis ›› 2025, Vol. 78: 324-335.DOI: 10.1016/S1872-2067(25)64805-4
• Articles • Previous Articles Next Articles
Yun-Fei Xiaa, Bo Liua, Zi-Yu Zhanga, Zi-Gang Zhaob, Pan Guoa, Si Lina, Bing Liua, Yan Wanga, Yun-Long Zhanga,*(
), Lei Zhaoa,*(
), Li-Guang Wangc,*(
), Zhen-Bo Wanga,*(
)
Received:2025-05-27
Accepted:2025-07-02
Online:2025-11-18
Published:2025-10-14
Contact:
*E-mail: wangzhb@hit.edu.cn (Z.-B. Wang), 20220123@hit.edu.cn (Y.-L. Zhang), leizhao@hit.edu.cn (L. Zhao), wanglg@zju.edu.cn (L. G. Wang).
Supported by:Yun-Fei Xia, Bo Liu, Zi-Yu Zhang, Zi-Gang Zhao, Pan Guo, Si Lin, Bing Liu, Yan Wang, Yun-Long Zhang, Lei Zhao, Li-Guang Wang, Zhen-Bo Wang. Ultrafine L10 PtFeZn intermetallics via a two-step annealing process for oxygen reduction reaction: Decoupling alloying and ordering stages[J]. Chinese Journal of Catalysis, 2025, 78: 324-335.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64805-4
| Sample | ZnNC | Comm-20PtC | XC72-15PtFe | ZnNC-15PtZn | ZnNC-15PtFeZn | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Item | XPS a | ICP b | XPS | ICP | XPS | ICP | XPS | ICP | XPS | ICP |
| C | 77.2 | — | 74.5 | — | 80.2 | — | 70.7 | — | 67.8 | — |
| N | 6.85 | — | — | — | 0.51 | — | 5.05 | — | 4.80 | — |
| O | 8.79 | — | 3.90 | — | 4.16 | — | 7.77 | — | 9.08 | — |
| Zn | 7.13 | 5.43 | — | — | — | — | 5.99 | 4.63 | 2.51 | 1.98 |
| Fe | — | — | — | — | 3.77 | 4.68 | — | — | 3.99 | 4.23 |
| Pt | — | — | 21.6 | 20.0 | 11.4 | 16.0 | 10.5 | 18.1 | 11.8 | 17.6 |
Table 1 hemical composition analysis (wt%) of carbon precursor and catalysts.
| Sample | ZnNC | Comm-20PtC | XC72-15PtFe | ZnNC-15PtZn | ZnNC-15PtFeZn | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Item | XPS a | ICP b | XPS | ICP | XPS | ICP | XPS | ICP | XPS | ICP |
| C | 77.2 | — | 74.5 | — | 80.2 | — | 70.7 | — | 67.8 | — |
| N | 6.85 | — | — | — | 0.51 | — | 5.05 | — | 4.80 | — |
| O | 8.79 | — | 3.90 | — | 4.16 | — | 7.77 | — | 9.08 | — |
| Zn | 7.13 | 5.43 | — | — | — | — | 5.99 | 4.63 | 2.51 | 1.98 |
| Fe | — | — | — | — | 3.77 | 4.68 | — | — | 3.99 | 4.23 |
| Pt | — | — | 21.6 | 20.0 | 11.4 | 16.0 | 10.5 | 18.1 | 11.8 | 17.6 |
Fig. 1. (a) Formation mechanism of ZnNC-PtFeZn nanoparticles under the two-step annealing protocol. (b) XRD patterns of ZnNC-15PtFeZn and control samples. TEM images of ZnNC-15PtFeZn (c), XC72-15PtFe (e), and ZnNC-15PtZn (f). (d) SAED pattern of ZnNC-15PtFeZn.
Fig. 2. (a,b) HAADF-STEM images of ZnNC-15PtFeZn, and inset is the Z-contrast profile along the <110> axis of PtFeZn NP. (c-f) EDS mapping and line scanning of ZnNC-15PtFeZn. (g) Pt 4f XPS spectra of catalysts.
Fig. 3. XAS characterization of ZnNC-15PtFeZn and references. (a-c) L3-edge XANES spectra, FT-EXAFS, and WT analysis of Pt. (d-f) K-edge XANES spectra, FT-EXAFS, and WT analysis of Fe. (g,h) K-edge XANES spectra, FT-EXAFS, and wavelet transform analysis of Zn. (Pc in FePc and ZnPc is short for phthalocyanine)
Fig. 4. (a) CV curves in N2-saturated 0.1 mol/L HClO4. (b) ORR polarization in O2-saturated 0.1 mol/L HClO4. (c) Tafel slope. (d) Durability tests. (e) MEA performance. (f) Comparison of power density with those of recently reported catalysts.
Fig. 5. (a,b) Formation mechanism of L10 PtFeZn ternary alloy. (c) ORR reaction free energy diagrams of catalysts. (d) Possible ORR reaction pathways of ZnNC-15PtFeZn. (e) Vacancy formation energies of Pt, Fe, and Zn for catalysts.
|
| [1] | Yu Chengwen, Liang Lecheng, Mu Zhangyan, Yin Shaoqi, Liu Yuwen, Chen Shengli. FeNC shell-stabilized L10-PtFe intermetallic nanoparticles for high-performance oxygen reduction [J]. Chinese Journal of Catalysis, 2025, 75(8): 125-136. |
| [2] | Chenhao Li, Hao Wang, Weiwei Wang, Shuo Bai, Zhongbin Gong, Qinqin Sang, Yuqing Zhang, Feng Huo, Yanrong Liu. PtCu nano-dendrites with enhanced stability in proton exchange membrane fuel cells [J]. Chinese Journal of Catalysis, 2025, 73(6): 322-333. |
| [3] | Yao Yao, Juping Xu, Minhua Shao. Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface [J]. Chinese Journal of Catalysis, 2025, 73(6): 271-278. |
| [4] | Siming Li, Enyang Sun, Pengfei Wei, Wei Zhao, Suizhu Pei, Ying Chen, Jie Yang, Huili Chen, Xi Yin, Min Wang, Yawei Li. Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells [J]. Chinese Journal of Catalysis, 2025, 72(5): 277-288. |
| [5] | Mingjia Lu, Jinhui Liang, Binwen Zeng, Wei Li, Yunqi Li, Qinqxin Wang, Yuhuai Li, Hong Chen, Jianzheng Li, Yangyang Chen, Lecheng Liang, Li Du, Yan Xiang, Shijun Liao, Zhiming Cui. Mesoporous bowl-like carbon support for boosting oxygen transport of fuel cell cathode [J]. Chinese Journal of Catalysis, 2025, 72(5): 254-265. |
| [6] | Haotian Guo, Lulu Zhao, Xinyu Liu, Jing Li, Pengfei Wang, Zonglin Liu, Linlin Wang, Jie Shu, Tingfeng Yi. Electrospinning technology combined with MOFs: Bridging the development of high-performance zinc-air batteries [J]. Chinese Journal of Catalysis, 2025, 79(12): 32-67. |
| [7] | Baofa Liu, Weijie Pan, Zhiyang Huang, Yi Zhao, Zuyang Luo, Tayirjan Taylor Isimjan, Bao Wang, Xiulin Yang. Unlocking 5300-h ultrastable metal-free ORR catalysts for Zn-air batteries via F-N co-doped tailored carbon pore architectures and synergistic adsorption modulation [J]. Chinese Journal of Catalysis, 2025, 79(12): 100-111. |
| [8] | Shu-Hu Yin, Xiao-Yang Cheng, Yu Han, Ting Zhu, Zhong-Wei Yu, Rui Huang, Jun Xu, Yan-Xia Jiang, Shi-Gang Sun. Proximity-engineered Ru single-atom sites modulate Fe-N4 spatial distortion for enhanced acidic oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2025, 78(11): 343-353. |
| [9] | Xinqi Wang, Xueyuan Zhang, Menggai Jiao, Runlin Ma, Fang Xie, Hao Wan, Xiangjian Shen, Li-Li Zhang, Wei Ma, Zhen Zhou. The strong Pt-N3O coordination in graphene nanosheets accelerates the 4e− electrocatalytic oxygen reduction process [J]. Chinese Journal of Catalysis, 2025, 77(10): 227-235. |
| [10] | Wenhui Qi, Xiuyan Li, Shaonan Gu, Bin Sun, Yinan Wang, Guowei Zhou. Electronic structure modulation of metal based organic catalysts for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 77(10): 45-69. |
| [11] | Rui Chen, Xiang Fang, Dongfang Zhang, Lanqi He, Yinlong Wu, Chenghua Sun, Kun Wang, Shuqin Song. In-situ construction of three-dimensional ordered cobalt-nitrogen- carbon nanotubes integrated self-supporting electrode for efficiently electrocatalyzing oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2024, 61(6): 237-246. |
| [12] | Wei Liao, Qian Zhou, Jin Long, Chenzhong Wu, Bin Wang, Qiong Peng, Jianxin Cao, Qingmei Wang. Vacancy engineering of carbon support strengthens the interaction with in-situ synthesized Pt nanodendrites for boosted oxygen reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 59(4): 260-271. |
| [13] | Zhiyuan Yang, Yan Zhang, Juanding Xiao, Junying Wang, Junzhong Wang. Enhancing oxygen reduction of Fe-N-C active sites onto graphene via bismuth sacrifice for Zn-air batteries [J]. Chinese Journal of Catalysis, 2024, 59(4): 272-281. |
| [14] | De-Gui Wu, Xiao-Gen Xiong, Zhong-Dong Zhao, Shu-Qin Song, Zhao-Bin Ding. Unravelling ligand topology effect on the binding of oxygen reduction reaction intermediates on Fe-Nx-C single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 59(4): 214-224. |
| [15] | Mengran Liu, Canyu Liu, Tianfang Yang, Shixiang Hu, Siyun Li, Shizhe Liu, Yang Liu, Ye Chen, Bingcheng Ge, Shuyan Gao. High-efficiency electrochemical H2O2 synthesis by heteroatom-doped NiX/Ni nanocomposites with honeycomb-like porous carbon [J]. Chinese Journal of Catalysis, 2024, 66(11): 212-222. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||